Medical instrumentation

BIOEN 302 11/19/2010

Medical instrumentation

 <u>Definition</u>: instrument for sensing, diagnostics, therapeutics or surgery of human being.

Medical instrumentation

- <u>Definition</u>: instrument for sensing, diagnostics, therapeutics or surgery of human being.
- Fundamental purpose: to enhance the capabilities of human beings to help themselves and each other.

Medical instrumentation classification

- Diagnostic instrumentation
- Therapeutic instrumentation
- Clinical laboratory instrumentation

Medical instrumentation classification

- Diagnostic instrumentation
- Therapeutic instrumentation
- Clinical laboratory instrumentation

Diagnostic instrumentation

 Definition: a device that gathers information leading to the identification of a disease or disorder.

Stethoscope (invented in 1819)

CT (X-ray computed tomography)

Diagnostic instrumentation

 Definition: a device that gathers information leading to the identification of a disease or disorder.

Stethoscope (invented in 1819)

CT (X-ray computed tomography)

Generalized composition of diagnostic instrument

Generalized composition of diagnostic instrument

Measurand: physical quantity, property, or condition that the system measures.

Examples:

- Blood oxygen saturation
- Electrical activity of the heart
- Tumor

Examples:

- Blood oxygen saturation
- Electrical activity of the heart
- Tumor

Examples:

- Blood oxygen saturation
- Electrical activity of the heart
- Tumor

Ultrasound image of tumor in liver

Constrains:

- Accessibility
- Vary with time and among patients
- Safety

Constrains:

- Accessibility
- Vary with time and among patients
- Safety

Constrains:

Accessibility

Vary with time and among patients

Test	Results		Reference Range			Indicator			
Surger Street	-	10.00					LOW	NORMAL	HIGH
ALB	=	2.9	g/dl	2.2	4	3.9			
ALKP		136	U/L	23		212			
ALT	=	48	0/L	10	8.	100			T
AMYL	=	887	U/L	500	1	1500			
BUN		13	mg/dl	7	÷.	27	L		
Ca		9.9	mg/dl	7.9	24	12.0	L		
CREA	-	0.9	mg/d1	0.6	1	1.9	C		
GLU	-	123	mg/dl	74	14	149			
LIPA	(=)	613	U/L	200	37	1800			
PHOS	-	3.0	mg/dl	2.5	÷.	6.8	L		
TBIL		0.3	mg/dl	0.0	22	0.9			
TP	=	6.2	g/d1	5.2	12	8.2			
GLOB		3.3	g/dl	2.5	24	4.5			

Constrains:

- Accessibility
- Vary with time and among patients
- Safety:
 - Limitation of external applied signals
 - Electrical safety

Generalized composition of diagnostic instrument

Sensor: a device that converts the measurand into a signal carrying information.

Classification: according to the quantities to be measured

- Thermal quantities
- Mechanical quantities
- Chemical quantities
- Radiation intensity

- Classification: according to the quantities to be measured
 - Thermal quantities
 - Mechanical quantities
 - Chemical quantities
 - Radiation intensity

- Classification: according to the quantity to be measured
 - Thermal quantities
 - Mechanical quantities
 - Chemical quantities
 - Radiation intensity

- Classification: according to the quantity to be measured
 - Thermal quantities
 - Mechanical quantities
 - Chemical quantities
 - Radiation intensity

Blood glucose meter

- Classification: according to the quantity to be measured
 - Thermal quantities
 - Mechanical quantities
 - Chemical quantities
 - Radiation intensity

- Static characteristics: the relationship between the output signal and the measurand.
- Limit of detection: the lowest value of measurand that can be detected by the sensor.
- Sensitivity: the smallest change it can detect in the quantity that it is measuring.
- Repeatability: ability of a sensor to reproduce output readings under the same input.

Requirements:

- Sensitive to the measured property
- Accurate
- Stable and reliable

Generalized composition of diagnostic instrument

 Signal processing: amplifies, filters, or in any other way changes the output of the sensor to prepare signals suitable for display.

- Challenges:
 - Biological signal magnitudes are low
 - Any measurement includes noise

Parameter	Range
ECG	0.5 – 4 mV
Blood flow speed	1 – 300 ml/s

- Challenges:
 - Biological signal magnitudes are low
 - Any measurement includes noise

- Noise sources:
 - <u>External</u>: power lines, radio broadcast, cell phone ...
 - Internal: muscle noise, motion artifact...

- Eliminate noise:
 - Signal filtering: separate noise from the desired signal using their distinct property. e.g. separate high frequency noise from low frequency signal.
 - Opposing inputs: if noise is known, it can be removed from the signal by subtracting the noise from the signal.

Generalized composition of diagnostic instrument

 Output display: convey the information obtained by the measurement in a meaningful way (visual, audible)

Question?

Therapeutic instrumentation

- <u>Definition</u>: a device that is used to treat a disease or disorder.
- Example:
 - Ultrasound devices in therapy

Ultrasound

 Ultrasound: sound wave with a frequency beyond the upper limit of human hearing (>20 KHz).

Ultrasound

 Ultrasound: sound wave with a frequency beyond the upper limit of human hearing (>20 KHz).

Ultrasound in cancer treatment

 High-intensity focused ultrasound (HIFU): Used to heat and destroy tumors.

Cancer treatment instrument

Clinical devices

Clinical applications

- Prostate cancer
- Liver cancer
- Breast cancer
- Pancreatic cancer

. . . .

Ultrasound in stop bleeding

- Exsanguination ("bleeding to death")
 - = **80%** of early mortality in civilian injuries
 - = **50%** of all battlefield mortality.

Explosion causes internal bleeding

Ultrasound in stop bleeding

 Portable device that could be used near the site of trauma to reduce mortality from severe blood loss.

Portable HIFU device

Ultrasound in stop bleeding

Summary

DiagnosticTherapeutic

Historical Perspective: 20th Century

- 1903 ECG heart diagnostic
- 1924 EEG brain waves
- 1928 ESU cauterizing scalpel
- 1928 Iron Lung respiration assist
- 1936 Nuclear Medicine
- 1956 Defibrillation
- 1957 Pacemaker (1960 implantable)

- 1957 Ultrasound Imaging (anatomical imaging)
- 1970 CT Scanner (anatomical imaging)
- 1975 Inter aortic balloon pump
- 1982 MRI (anatomical imaging)
- 1984 Artificial Heart
- 1990s PET use radio isotopes (physiological imaging)