How it works: Positron Emission

Types of Photons

- X-ray photons
- gamma (γ) ray photons (Greek letters for radiation from nuclear decay processes)
- annihilation photons

all can have the same energy

Molecular Imaging: Glu Metabolism

How it works: Scintillation

Scintillators used in PET Scanners

Materi al	Cost	<i>Effective</i> number of scintillation photons @ 511 keV determines energy and spatial resolution	<i>Effective</i> Density determines scanner sensitivity	Decay time (µs) determine s deadtime and randoms	Comments
Nal(Tl)	cheap (relativel y)	highest	lowest	long	Hygroscop ic
BGO	expensiv e	lowest	highest	long	workhorse
LSO	more expensiv e	high	high	very short	new technology
GSO	more expensiv e	very high	somewhat lower than LSO	very short	new technology

How it works: Timing coincidence

Typical PET Scanner Detector Ring

Anatomy: PET gantry

Detector + PMT assemblies

Typical PET Image

Elevated uptake of FDG (related to metabolism)

Lung cancer example: Very obvious!

What is Attenuation?

The single most important physical effect in PET imaging:

- The number of detected photons is significantly reduced compared to the number of positron decays in a spatially-dependent manner
- For PET it is due to Compton scatter out of the detector ring
- For CT it is a combination of Compton scatter and photoelectric absorption

Manuel Contraction of the second seco

one 511 keV photon scattered out of scanner

one 511 keV photon absorbed

Simulation of the Effects of *not* Performing Attenuation Correction of PET Emission Image

Effects of Attenuation: Patient Study

PET: without attenuation correction

PET: with attenuation correction (accurate)

CT image (accurate)

Attenuation Correction

- Transmission scanning with an external photon source is used for attenuation correction of the emission scan
- The fraction absorbed in a transmission scan, along the same line of response (LOR) can be used to correct the emission scan data
- The transmission scan can also be used to form a 'transmission' or 'attenuation' image

PET Transmission imaging (annihilation photon imaging)

- Using 3-point coincidences, we can reject TX scatter
- $\mu(x,y)$ is measured at needed value of 511 keV
- near-side detectors, however, suffer from deadtime due to high countrates, so we have to limit the source strength (particularly in 3D)

And, if you have PET/CT scanner: X-ray TX

- Photon flux is <u>very</u> high, so very low noise
- Greatly improved contrast at lower photon energies.
- Scatter and beam-hardening can introduce bias.
- $\mu(x,y,E)$ is measured as an weighted average from ~30-120 keV, so μ (*x*,*y*,511keV) must be calculated, potentially introducing bias

X-ray and Annihilation Photon Transmission Imaging

X-ray (~30-120 keV) Low noise Fast Not a physical quantity

PET Transmission (511 keV)

Noisy Slow Linear attenuation coeffcient at 511 keV

Quantitative errors in measurement

Lost (attenuated) Scattered coincidence Random coincidence event event event

3D versus 2D PET imaging

2D Emission Scan

 ✓ fewer true, scattered, and random coincidences

3D Emission Scan

✓ more true, scattered, and random coincidences

Effect of random coincidence corrections in 2D and 3D

2D Emission Scan

3D Emission Scan

Noise Equivalent Counts or NEC

NEC comparisons

- Major arguing point for some vendors
- Determined partly by detector type, detector and scanner geometry, acquisition mode, and front-end electronics
- Important, but not sole factor for image quality

Partial Volume Effect

- Apparent SUV drops with volume
- Also effected by image smoothing

Fillable spheres

PET Resolution Losses

true tracer uptake

reconstructed values (scanner resolution + smoothing of noisy data)

- Simulation study with typical imaging protocols
- Limits quantitation in oncology imaging, important for following therapy if size changes

Time of Flight (TOF) PET/CT

Philips Gemini TF

PET scanner LYSO : 4 x 4 x 22 mm³ 28,338 crystals, 420 PMTs 70-cm bore, 18-cm axial FOV

CT scanner Brilliance 16-slice

Installation at U.Penn Nov '05 Validation and research patient imaging Nov '05 – Apr '06 *50 patients* Beta testing and upgrade to production release software May '06 – Jun '06 *40 patients (to date)*

Heavy-weight patient study

Colon cancer

119 kg BMI = 46.5

13 mCi 2 hr post-inj 3 min/bed

Improvement in lesion detectability with TOF