Geometry of Aerial Photographs

Aerial Cameras

- Aerial cameras must be (details in lectures):
- Geometrically stable
- Have fast and efficient shutters
- Have high geometric and optical quality lenses
- They can be classified according to type of frame:
- Single lens Frame
- Multiple frame
- Strip Frame
- Panoramic
- They can also be either film or digital cameras.

THIS COURSE WILL DISCUSS ONLY SINGLE FRAME CAMERAS

Aerial camera with viewfinder and electronic control

Aerial Camera in action

Single lens Frame Cameras

- Standard is $9^{\prime \prime}(23 \mathrm{~cm})$ frame size and $6^{\prime \prime}$ $(15.24 \mathrm{~cm})$ focal length(f).
- They can be classified, as mentioned before, according to the field of view to:
- Normal angle (up to 75°)
- Wide angle (up to 75°)
- Super-wide angle (greater than to 75°)

Components of a single frame film camera.

Three main parts:

1. Magazine
2. Body
3. Lens cone assembly

Components and notes to be discussed din lecture

Components of a single frame film camera.

Fiducial Marks

A vertical Photograph

Components of a single frame film camera.

Example of a corner Fiducial Mark under Magnification

Figure 2.31 The LH Systems ADS 40 digital camera.

800 km / 500 miles

Spaceborne Sensors

12 km / 40,000 ft

Geometry of aerial cameras

Geometry of aerial cameras

- Identify the following:
- L: perspective center.
- Fiducial Center F.C.
- Principal Point (P.P) or O: the point where the perpendicular from the perspective center intersects the photograph. Usually deviates from the F.C by a very small distance.
- Principal axis: the line perpendicular from the principal center on the plane of the photograph (negative).
- f the focal length, equals the Principal Distance.

Types of Photographs (by tilt)

Aerial Photos are:

 1- Vertical or tilted- Vertical photos are taken with the optical axis (Principal Line) vertical or tilted by no more than 2°
- Tilted: if the optical axis is tilted by no more than 3°

Types of Photographs (by tilt)

2- Oblique Photos

 If the optical axis is intentionally strongly tilted to increase coverage, they are:- Low oblique: if the tilt is not enough to show the horizon, usually 3 to 30°

Types of Photographs (by tilt)

2- Oblique Photos

- Low oblique
- High oblique: if the horizon is shown on the photograph

High oblique

Low oblique

Example of vertical, high, and low oblique photos

Types of Photographs (by tilt)

3- Convergent

 PhotographsLow oblique photos in which camera axis converge toward one another

(a)

Comparison between vertical and oblique photos

- Coverage
- Geometry
- Low cloud?
- View: issues with tall features and views of sides of features.
- Others

Photo Coordinates (film)

- We use positives for ease of geometry and familiarity of feature shapes, negatives may be used in certain applications
- Lines connecting middle fiducials ON THE POSITIVE define a photo coordinate system, in which x is in the direction of flight, A RIGHT-HAND coordinate system accurate as 1 micron = $1 / 1000 \mathrm{~mm}$

Photo Coordinates (digital)

- Pixels in a digital image represent coordinates of rows and columns.

	Column							
	0	1	2				6	
0	$+$	+	+3	+	+	$+$	+	+
1	+	+	+	+	+	+	+4	+
2.	+	+	+	+	+	+	+	+
3	+	$+$	+	+	+	+	+	+
4	+	+	$+$	9	+	+	$+$	+
5	+	$+$	$+$	+	+	+	$+$	$+$
6	+	$+1$	+	+	+	$+$	+2	+
7	$+$	$+$	$+$	+	+	+	+	+
						ima		enced

(b)

FIGURE 9-3
(a) Nonreferenced satellite image. (b) Georeferenced image. (Courtesy University of Florida.)

Column

Geometry of a vertical photographs

- The line LoO, the optical axis is assumed truly vertical

Figure 3.8 Geometry of vertical photographs.

Geometry of a digital frame camera

- Similar geometry is assumed in case of a digital camera
- Uses a two dimensional array of CCD elements mounted at the focal plane of the camera.
- The image is a grid of picture elements (pixels)
- Similar geometry is assumed in case of a digital camera
- Uses a two dimensional array of CCD elements mounted at the focal plane of the camera.
- The image is a grid of picture elements (pixels)
- The size of pixels in one image represent the resolution of the image, the smaller the pixel, the higher (better) the resolution.
- A mega (million) pixel image includes one million pixel
- Number of pixels can be as low as $500 \times 500=250,000$ pixels, or megas of pixels for commercial cameras, or gegapixels in classified cameras.
- What is the size of image of a camera that includes a CCD frame sensor, that is 1024 X1024 elements, if the size of a pixels is 5μ ? How many megapixels are there?
Answer: image size $=\quad=\quad \mathrm{mm}$,

$$
\text { No of pixels = }=\text { mega pixel }
$$

Digital image resolution

1.6 m

0.10 m

0.80 m

0.05 m

0.40 m

0.03 m

0.20 m

0.01 m

image taken from a firstgeneration Landsat satellite over Milwaukee, Wisconsin.

1-m

resolution

image

obtained

from the

 IKONOS
satellite

showing
San

Francisco.

Concept of image pyramids

Figure 2.32 Raw ADS 40 image.

Figure 2.33 Rectified ADS 40 image.

Flying spot scanner: The geometry is such that the after a row is finished being scanned, the vehicle advanced to the beginning of the next row.

- Which digital system is suitable for what purpose??
- Why??

Image coordinate corrections

Our goal is to measure photo coordinates and relate them to ground coordinates by equations to obtain ground coordinates. Once you have ground coordinates, you can draw a map, establish cross section, etc.
Measured photo coordinates need to be corrected prior to substation in equations, for the following:

- Film shrinkage
- Principal point location
- Lens distortions
- Atmospheric refraction
- Earth curvature
- Which of the corrections inapplicable for digital images??

Jigure 3.27 Atmospheric refraction.

Vertical Photographs

Scale of a Vertical Photograph

- Scale of a photograph is the ratio of a distance on a photo to the same distance on the ground.
- Photographs are not maps, why?
- Scale of a map and scale of a photograph.
- Orthphotos (orthophoto maps), what are they?
- Scale (s) at any point:

$$
S=\frac{f}{H-h}
$$

-Average scale of a photograph:

$$
\mathrm{S}_{\mathrm{avg}}=\frac{f}{\mathrm{H}-\mathrm{h}_{\mathrm{avg}}}
$$

If the f, H, and h are not available, but a map is available then:

$$
\text { Photo Scale }=\frac{\text { photo distance }}{\text { map distance }} \mathrm{X} \text { map scale }
$$

The scale of a vertical photograph approximately equals to the ratio of the flying height above the ground (H) and the focal length of the camera lens (f)

$$
\text { Scale }=\frac{\text { imageDist }}{\text { surfaceDist }}=\frac{f}{H}
$$

Scale of a vertical photograph.

Ground Coordinates from a Single Vertical Photograph

- With image coordinate system defined, we may define an arbitrary ground coordinate system parallel to (x, y) origin at nadir.
- That ground system could be used to compute distances and azimuths. Coordinates can also be transformed to any system
- In that ground system:

$$
\begin{aligned}
& X_{a}=x_{a} * \text { (photograph scale at a) } \\
& Y_{a}=y_{a}{ }^{*} \text { (photograph scale at a) } \\
& \hline
\end{aligned}
$$

Figure 27-8 Ground coordinates from a vertical photograph.

Relief Displacement on a Vertical Photograph

- The shift of an image from its theoretical datum location caused by the object's relief. Two points on a vertical line will appear as one line on a map, but two points, usually, on a photograph.
- The displacement is from the photgraphic nadir point. In a vertical photo, the displacement is from the principal point, which is the nadir in this case.
- Photographic Nadir point is where the vertical from the Exposure Station intersects the photograph.

Relief

displacement

Towers A and B are equally high, but placed at different distances from the nadir point, thus have different relief displacements. A tower, depicted beneath nadir point has no relief displacement

Relief displacement from Nadir (enlarged)

$r_{a} / R=f / H$

Figure 27-9 Relief displacement on a vertical photograph.

- Relief displacement (d) of a point wrt a point on the datum :

$$
d=\frac{r h}{H}
$$

where:
r : is the radial distance on the photo to the high point
h : elevation of the high point, and H is flying height above datum

- Assuming that the datum is at the bottom of vertical object, H is the
flying height above ground, the value h will compute the object height.

Or, in general:

Assume that point C is vertically above B, they are shown on the photograph as (c) and (b).
Measured radial distances from the center to points c and $b\left(r_{c}\right.$ and r_{b}), then

$$
\begin{aligned}
& d_{c}=r_{c}-r_{b} \quad \text { and; } \\
& d_{c}=\left(\begin{array}{lll}
r_{c} & * & \left.h t_{c}\right) /\left(\text { flying height above ground }=H-h_{b}\right)
\end{array}\right.
\end{aligned}
$$

Example 6-7. A vertical photograph taken from an elevation of 535 m above mean sea level (MSL) contains the image of a tall vertical radio tower. The elevation at the base of the tower is 259 m above MSL. The relief displacement d of the tower was measured as 54.1 mm , and the radial distance to the top of the tower from the photo center was 121.7 mm . What is the height of the tower?

Answer:

$\mathrm{d}=\mathrm{rh} / \mathrm{H}^{\prime}$, then

$\mathrm{H}=$

Tilted Photographs

Basic elements of a tilted photographs

- The optical axis is tilted from the vertical
- Identify the following:
- $t=$ angle of tilt between the plumb line and the optical axis LO
 principal line in the isocenter.
- no $=$ the principal line joining the nadir point (n) and the principal point (0).

- Lno = the principal plane: it is the vertical plane containing o, L and n (shaped plane).
- im = axis of tilt: it is the line perpendicular to the principal line from the isocenter i in the plane of the photograph.
- $\mathrm{S}=$ the swing angle: it is the angle measured from the positive photographic y-axis clockwise to the principal line (on).
- x'y' axes are the auxiliary coordinate system of the tilted photograph where:
$\mathrm{y}^{\prime} \quad$ is the principal line (no).
$x^{\prime} \quad$ is the perpendicular to y^{\prime} from point n.
$\theta=$ the rotation angle between y and y^{\prime} axes in a counterclockwise direction.

Figure (3-6) Basic elements of tilted photograph

What and why an auxiliary coordinate

 system?- A step to relate photo coordinates to ground, because the photograph is tilted.
- Thus, photo and ground coordinates are not parallel any more.
- You need a system in between as a step to transfer photo coordinates to ground, specially that tilt is variable.

Relationship between Photo and Auxiliary coordinate system

$$
\begin{aligned}
& x_{a}^{\prime}=x_{a} \cos \theta-y_{a} \sin \theta \\
& y_{a}^{\prime}=x_{a} \sin \theta+y_{a} \cos \theta+f \tan t
\end{aligned}
$$

Scale of a tilted Photograph

The tilt of a photograph occurs around the axis of tilt in the direction of the principal line.

Scale of a tilted Photograph

- Scale = horizontal distance on the photo / horizontal distance on the ground =

Also,

LK $=\mathrm{H}-\mathrm{h}_{\mathrm{A}}$

= flying height above ground

Then:

Scale of a tilted photograph $\mathrm{S}_{\mathrm{A}}=f(\sec t)-y^{\prime} \sin t /\left(\mathrm{H}-\mathrm{h}_{\mathrm{A}}\right)$

Example

Example 3-1:

A tilted Photo is taken with a 6 inch focal length camera from a flying meight of 8200 feet Tilt and swing angles are $3^{\circ} 30^{\circ}$ and 218° respectively. Point (A) has an elevation of 1435 feet and its image coordinates are $\mathbf{x a}=-285$ inch. ya 3.43 inch . What is the scale at point (a)?

Solution
$\theta=$

Ground Coordinates from a tilted photograph

- Coordinates of point A in a ground coordinate system X^{\prime}, Y^{\prime} where:
- X^{\prime}, Y^{\prime} are parallel to x^{\prime} and y^{\prime} (auxiliary system)
- Ground Nadir N is the origin of the ground system
- Note that in the auxiliary coordinate system, lines parallel to x^{\prime} are horizontal, thus x^{\prime} on the photo is horizontal and directly related to ground X by the scale, or

$$
X_{A}^{\prime}=x^{\prime} / S_{A}
$$

- But in the auxiliary system, y^{\prime} is in the direction of maximum tilt and not horizontal, the scale is ratio between horizontal projections.
- Ka: Horizontal projection of $y^{\prime}=y^{\prime} \cos t$
- Then,
- $Y^{\prime}=y^{\prime} \cos t / S$

Example

Example 3-1:

A tilted Photo is taken with a 6 inch focal length camera from a flying meight of 8200 feet Tilt and swing angles are $3^{\circ} 30^{\circ}$ and 218° respectively. Point (A) has an elevation of 1435 feet and its image coordinates are $\mathbf{x a}=-285$ inch. ya 3.43 inch. What is the scale at point (a)?
If the image coordinates of another point (b) are $\mathrm{xb}=3.09$ inch, yb 1.78 inch. and the elevation of (B) is 1587 feet calculate ground coordinates of (A) and (B).

