
Abstract
In recent years, object-oriented image analysis has been
widely adopted by the remote sensing community. Much
attention has been given to its application, while the
fundamental issue of scale, here characterized by spatial
object-definition, seems largely neglected.

In the case of vegetation parameters like aboveground
biomass and leaf area index (LAI), fundamental objects are
individual trees or shrubs, each of which has a specific
value. Their spatial extent, however, does not match pixels
in size and shape, nor does it fit the requirements of
regional studies. Estimation of vegetation parameters
consequently demands larger observation units, like vegeta-
tion patches, which are better represented by variably
shaped objects than by square pixels.

This study aims to investigate optimal object definition
for biomass and LAI. We have data from 243 field plots in
our test site in southern France. They cover a vegetation
range from landes to garrigue to maquis, which is consid-
ered to be the climax vegetation in the area. A HyMap
image covers the area.

The image is subjected to a Minimum Noise Fraction
(MNF) transformation, after which it is segmented with ten
different heterogeneities. The result is ten object sets, each
having a different mean object size. These object sets are
combined with the original image with the mean band
values serving as object attributes.

Field observations are linked to the corresponding
objects for each object set. Using Ridge regression, relations
between field observations and spectral values are identi-
fied. The prediction error is determined for each object set
by cross validation. The overall lowest prediction error
indicates the optimal heterogeneity for segmentation.

Results show that the scale of prediction affects predic-
tion accuracy, that increasing the object size yields an
optimum in prediction accuracy, and that aboveground
biomass and LAI can be associated with different optimal
object sizes. Furthermore, it is shown that the accuracy of
parameter estimation is higher for object-oriented analysis
than for per-pixel analysis.

Introduction
Remote sensing data offer a rich information source on
vegetation parameters, which may be needed as input to
models describing processes at the Earth’s surface (Cohen
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and Goward, 2004). Biomass (e.g., Lu, 2006; De Jong et al.,
2003), Leaf Area Index (LAI) (e.g., Weiss and Baret, 1999),
and vegetation cover (e.g., Rogan et al., 2002) can reasonably
well be estimated with low to moderate resolution imagery
(like SPOT-VGT or Landsat TM, respectively). Recently, hyper-
spectral data added even more power by providing spectral
detail that allows detection of some chemical compounds 
of vegetation (e.g., Kumar et al., 2001; Blackburn, 2002;
Haboudane et al., 2002).

The common approach in estimating vegetation parame-
ters is the per-pixel analysis, where field observations are
linked to the corresponding pixels to establish the predicting
equation. Remote sensing studies on vegetation parameters
usually apply a continuous model (Strahler et al., 1986),
because the objects of interest are much smaller than the
pixels by which they are displayed. Strahler et al. (1986)
distinguish two types of models depending on the relation
between the size of the field objects and the image pixels.
The L-resolution models are those models where the scene
elements (field objects) are smaller than the resolution cells
(pixels), while the H-resolution models includes those
models where the pixels are smaller than the field objects.
The H-resolution models allow the recognition of individual
objects in an image. When the field objects become much
smaller than the pixels, they are no longer treated as indi-
vidual objects but as continuous variables instead. As stated
before, this is usually the case for pixel-based vegetation
parameter estimation.

When the vegetation is considered as part of a hierarchi-
cal scene model (Woodcock and Harward, 1992), the scale
and square representation implied by pixels do not fit this
model (Fisher, 1997). The natural level would be a vegeta-
tion patch with relatively homogenous parameter values.
Such a patch will hardly ever be square, so pixels will only
sporadically match a natural scale level.

A solution could be found in irregularly shaped obser-
vation units, which are never present as such in remote
sensing images, but which can be created using image
segmentation. This is a procedure in which individual
pixels are grouped into spatially continuous regions where
the variance of a (group of) variable(s) (to be selected by the
user) does not exceed a certain threshold (Haralick and
Shapiro, 1985). The final segmentation depends both on the
variables included and the threshold value set.
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Existing segmentation techniques vary (a) in their
approach by starting at the entire image which is then
subdivided, or starting with the individual pixels which
are then grouped, and (b) in the weight given to the spatial
component compared to the variables from the feature
space (measurement space) (Haralick and Shapiro, 1985). 
In general, the more accurate results are obtained with the
computationally more intensive techniques, i.e., starting
with individual pixels and careful selection of the merges
to be made (Woodcock and Harward, 1992).

Segmentation studies have been performed for several
decades, but only recently computer processing capacity
increased such that image segmentation can be implemented
with a high level of accuracy and fast performance. This
resulted in the development and rapid expansion of object-
oriented image analysis (Baatz and Schäpe, 2000). Instead of
analyzing the spectral behavior of individual pixels, neigh-
boring pixels are grouped into objects, which then form the
observation units. This grouping bypasses the problem of
artificially square objects as used in per-pixel analysis
(Fisher, 1997), as long as the objects of interest cover a
number of pixels allowing a meaningful representation 
of their shape. Objects can be defined by segmentation,
stratification, or a combination of the two. Segmentation was
discussed earlier. Stratification is the process of grouping
pixels according to an external variable, the detail of which
determines the result.

Remote sensing classification studies profit from this
latter development. Object-oriented image analysis is much
closer to human vision than the per-pixel analysis. Classifi-
cation studies show both higher accuracy values and more
detailed legends (e.g., Yuan and Bauer, 2006).

The application of object-oriented image analysis in
vegetation parameter studies has been very limited so far,
although it seems to offer improvements on two aspects.
First, the geometric inaccuracies in both field and image
data are of less importance, since a field plot is linked to an
object rather than a pixel. The risk of linking it to a wrong
object is much smaller than the risk of linking it to a wrong
pixel, because of the larger spatial extent of objects (Mäkelä
and Pekkarinen, 2001). Secondly, the remote sensing model
changes from a continuous L-resolution model to a continu-
ous H-resolution model, where the objects of interest are
larger than a single pixel, but where the label assigned to
this object is still a continuous variable. Field plots are
often chosen such that they represent a vegetation patch.
With per-pixel analysis, this information is ignored, while
by grouping pixels, vegetation patches can show as individ-
ual objects (depending on the heterogeneity threshold).
Besides, by considering segments correlations between
bands within a segment can be taken into account as well
(Atzberger, 2004).

In literature on segmentation or object-oriented image
analysis very little attention is paid to optimal object defini-
tion. However, the definition is thought to affect the relations
that are found between field observations on vegetation
parameters and spectral information (Marceau et al., 1994).
Object definition by segmentation comprises both the choice
of spectral bands to be considered and the setting of a
heterogeneity threshold. With high correlations between
adjacent bands, the variance that these bands represent easily
gets too much weight. When objects are defined by stratifica-
tion, the detail of the external variable determines the
resulting objects.

Furthermore, optimal object definition need not be
identical for different vegetation parameters. For example,
biomass and leaf area index (LAI) are subject to different
dynamics. Biomass is determined by the accumulation of
yearly net growth. Whereas LAI is largely determined by the

yearly situation; in the case of evergreens the situation of
the previous two to four years will be dominant. Given this
difference in temporal steering dynamics, the optimal object
definition might also be different.

This paper focuses on the spatial aspects of object
definition by segmentation for vegetation parameter estima-
tion, i.e., on the effect that the maximum heterogeneity has.
The optimal spatial definition is here defined as the level of
segmentation that results in the lowest prediction error of
the vegetation parameters. Although the spectral bands
definitely will have their effect on object definition as well,
this will not be considered here. The aim of this paper is to
answer two questions:

1. How does the spatial definition of objects affect the statistical
relationships between field observations of leaf area index
and aboveground biomass and spectral object properties and
what is the optimal spatial definition?

2. Is this effect similar for the vegetation parameters leaf area
index and aboveground biomass?

Data
The study area needed to meet two conditions: (a) The
natural vegetation should show substantial variation, and (b)
hyperspectral data should be available. We selected a study
area in the La Peyne catchment in southern France, 60 km
west of Montpellier (Figure 1).

Vegetation Data
From August to October 2005 a field campaign was held.
Natural land-cover ranges from open areas with low herba-
ceous vegetation, landes, through dense bushes up to 2 m,
garrigue, to the climax vegetation of the region, maquis
(Sluiter, 2005; Sluiter and De Jong, 2007). In the literature,
maquis and oak forest are sometimes considered as different
vegetation types, distinguished by tree height. In this study
both types are considered as maquis. The vegetation in the
study area frequently suffers from water and heat stress, as
in all Mediterranean areas (Archibold, 1995).
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Figure 1. Study area.
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The spatial variation of vegetation cover, leaf area index
and aboveground biomass is high, while the number of
species is limited. Dominant tree species are Holm oak
(Quercus ilex), Downy oak (Quercus pubescens), Kermes oak
(Quercus coccifera), and the strawberry tree (Arbutus
unedo). The large spatial variation of the vegetation is
caused by the short range variation of geologic formations
and soil types resulting in significant, short range differ-
ences in water and nutrient availability.

Within the area, 243 plots were sampled. They were
distributed over the different vegetation types; within each
type nested sampling schemes were applied to ensure
spatial randomness and efficiency as most of the vegetation
types are hard to access. Distances between the plots within
a nest ranged from 10 to 90 m. Several nests coexisted
within each vegetation type. Each plot measured 5 m � 5 m
and was sampled for biomass and LAI.

Biomass
Biomass, in general, includes the aboveground and below-
ground living mass (Lu, 2006). In this study we only
consider aboveground biomass, because of the difficulty of
collecting belowground biomass data and since aboveground
biomass reflects degradation status of ecosystems, a further
objective of this study.

Three different approaches exist in aboveground
biomass estimation; they are based on field measurements,
remote sensing, and GIS-based methods (Lu, 2006). Field
measurements provide the most accurate biomass data, but
since they are time consuming and labor intensive, it is not
viable to use them for large areas. Remote sensing currently
forms the primary source for large area aboveground biomass
estimation, because of, among other reasons, the synoptic
view and proven reasonable correlation between spectral
bands and vegetation parameters.

We used allometric formulas to collect field data, which
were then related to spectral data. Allometric techniques
rely on relationships between a vegetation parameter as such
and any dimension(s) of the woody plant element, e.g., stem
diameter, tree height, and crown base height (Jonckheere
et al., 2004). For trees, we used the following formulas from
Ogaya et al. (2003):

ln AB = 4.900 + 2.277 ln D50 (1)

ln AB = 3.830 + 2.563 ln D50 (2)

where AB � aboveground biomass (in g), and D 50 � stem
diameter at 50 cm (in cm).

Equations 1 and 2 relate to the evergreen oak (Quercus
ilex) and the strawberry tree (Arbutus unedo), respectively.
The remaining trees were grouped into two groups based on
morphological similarity to either the evergreen oak or the
strawberry tree, and the corresponding formulas were
applied to them.

For shrubs we used a similar formula provided by
Pereira et al. (1994):

AB = 0.642 . H0.0075 . D max2.4901 (3)

where AB � aboveground biomass (in kg), D max � maxi-
mal diameter (in m), and H � height (in m).

Those equations were used to estimate the aboveground
biomass for individual trees or shrubs; by summing all results
per plot and dividing it by the plot area, values were trans-
formed into the amount of biomass per hectare. Obviously,
trees with their stems within a plot can have branches outside
the plot and vice versa. We assumed that the biomass estima-
tion error caused by this is negligible.

Biomass data were collected for 216 plots (Table 1).

Leaf Area Index
Leaf Area Index is the one-sided leaf area per unit surface
area. Direct estimates can be obtained by using a probe and
counting how often it hits a leaf when going through the
canopy. A destructive alternative includes picking all leaves
over a surface unit and scanning their area. An advantage of
both methods is the accuracy of the estimates. The first
method, however, provides a value for a single point which
can vary significantly over short distances. The second
method is time-consuming, since every leaf over the plot
area needs to be picked individually.

Indirect measurements are based on the light coming
through the canopy from different angles. The LAI-2000
Plant Canopy Analyzer (Li-COR, Lincoln, Nebraska) is
widely used to determine LAI values in situ. The instru-
ment, however, is costly and sensitive to different weather
conditions. An alternative can be found in hemispherical
photographs. This method is based on classifying the
photos into one of two classes; sky or vegetation. For
different angles the gap fraction is calculated and combined
over the different angles this indicates the LAI. Alterna-
tively, the gap fraction is calculated for a viewing angle of
57.5° as Warren-Wilson (1963 in Weiss et al., 2004) demon-
strated that projected area of the leaves (i.e., LAI) at this
angle is almost independent of leaf inclination. Hemispheri-
cal photos are less costly and less sensitive to weather
conditions as well. Advantages of the Licor2000 instrument
are the ease and speed with which the measurements are
performed. The hemispherical photos require more process-
ing time since they need to be classified, but are much
cheaper than the Licor2000. The ease and speed in the field
are similar, although the Licor2000 needs reference meas-
urements in the open field which can be cumbersome in
forested environments.

Weiss et al. (2004) performed a comparing study of
methods to determine or estimate LAI. They conclude that
calculation of the gap fraction at 57.5° from hemispherical
photographs provides the most accurate estimates (RMSE �
0.2) of LAI.

Within this study, we decided to use hemispherical
photographs. The sampling strategy within plots is not a
very critical issue within continuous canopies (Weiss et al.,
2004). We collected five photos, four at the diagonals one
meter from each corner and one in the center of the plot.
This way the plot was covered evenly, and each tree present
in the plot would be represented in at least one photograph.
Photos were taken at 50 to 80 cm above the surface. Only
photos taken in the upward direction were used, since
automatic distinction between vegetation and soil proved
impossible in this arid environment. This will result in a
slight underestimation for the garrigue and maquis plots,
although the vegetation below 50 cm is usually very thin or
even absent. The landes plots, where vegetation did not
exceed 50 cm, were excluded from the analysis since no LAI
data could be collected for them.
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TABLE 1. STATISTICAL CHARACTERISTICS OF

FIELD DATA

Biomass [Mg/ha] LAI [-]

N 216 243
mean 167 3.2
sd 209 0.84
variance 43742 0.7
min 0.1 0.4
max 1347 5.4
cv 1.25 0.26
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For the processing of the photos we used CAN-EYE, a
free software package developed at INRA, Avignon (Baret and
Weiss, 2004). It calculates the gap fraction for 57.5°. With
CAN-EYE first parts of the photos showing the sun or persons
were masked out. The remaining parts of the photos were
then classified into one of two classes, sky or vegetation.
After correcting for vegetation clumping, the LAI values for
the five photos were averaged resulting in a plot LAI value.

In total 243 plots were sampled for LAI (Table 1).

Image Data
A HyMap image recorded on 13 July 2003 covers the
catchment of the Peyne river. The image has 124 bands and
provides continuous spectral cover from 444 to 2,475 nm.
The spatial resolution is 5 m. The image was radiometrically
processed and geometrically rectified using ground control
points determined by GPS in the field and a 25 m resolution
DEM with the methods described in Schläpfer and Richter
(2002) and Richter and Schläpfer (2002).

Methods
Data Processing
Masking
Since we are interested in vegetation parameters, only the
vegetated pixels were included in the analysis to assure that
spectral variance in the image is a result of variance in
vegetation characteristics only. To remove the non-vegetated
pixels, a mask was produced in two steps. First, all pixels
with an NDVI value of 0.25 and less were selected. Next, a
buffer operation was applied, and the selected pixels were
all buffered by two more pixels. Without the buffer, the
pixels next to (masked-out) roads would show extreme
values in the succeeding Minimum Noise Fraction (MNF)
transformation, indicating that they were affected by the
neighboring non-vegetated pixels.

Minimum Noise Fraction
In a second step, we needed to reduce the 124-band data set
to a smaller number of bands. This need arises because (a)
computationally, the segmentation procedure is prohibitively
slow for such a large data set, (b) we believe the data
contains noise, which can be discarded before the segmenta-
tion step, and (c) the 124 bands are highly redundant
(collinear). To reduce the data set, we used Minimum Noise
Fraction (MNF) transformation (Green et al., 1988; Switzer
and Green, 1984). This procedure is an extension to princi-
pal components, in the sense that in addition to picking up
variance or correlation across bands it tries to capture
independent spatial correlation components, i.e., the spatial
patterns of interest in the consecutive bands. For the MNF
transformation, we used IDL-ENVI, Version 4.1 (RSI, 2004). To
estimate the spectral covariance matrix of the noise compo-
nent, a “homogeneous” region had to be identified; we used
a deep artificial lake in the center of the image for this. A
set of 20 MNF transformed bands was selected, explaining
84 percent of the total variance in the masked imagery.

Segmentation
Segmentation of the image was performed with eCognition
3.0, an object-based image analysis package (Definiens, 2003),
that applies a spatial clustering technique (Haralick and
Shapiro, 1985). Objects are formed by pair-wise clustering,
beginning with single-pixel objects (Baatz and Schäpe, 2000;
Benz et al., 2004). Clustering starts at randomly located seed
points with a regular spatial distribution, aiming at maintain-
ing similar object sizes in the image. The clustering proce-
dure stops when the heterogeneity threshold set by the user
is exceeded. Heterogeneity can stem from two sources,

spectral and shape heterogeneity. The increase in spectral
heterogeneity (�hspectral) associated with the merge of two
objects (obj_1 and obj_2) is defined as (Benz et al., 2004):

(nobj_merge
. �s,merge – (nobj_1

. �s,obj_1

+ nobj_2
. �s,obj_2)) (4)

with s standing for spectral band number, w for weight
factor, n for number of pixels in an object, obj_merge for the
merged object, and � for the standard deviation within an
object. The maximum increase in heterogeneity stemming
from the merge of two objects is set by the scale parameter.

We defined the objects exclusively by MNF values
without any limitations from shape parameters. Since (a) the
bands are not normalized, and (b) �hspectral is not corrected
for the number of bands, the meaning of scale parameter
values are data-set specific. The MNF image was segmented
ten times with increments of the scale parameter of 5. The
number of segments decreased rapidly with increasing scale
parameter values (Table 2 and Plate 1).

For each segment, the mean value for each of the 124
HyMap bands was calculated.

Data Set Preparation
For both vegetation parameters, LAI and aboveground biomass,
11 data sets were prepared, ten for the different segmentation
levels, and one relating the field plots to individual pixels. As
a result 22 data sets were prepared. Each data set contained
the parameter values for each plot and the 124 spectral band
values, so the number of observations is equal in each data
set of the respective parameters (LAI and Biomass). The MNF
bands were only used to segment the images, while the
relationship between the HyMap image and the vegetation
data will be based on the original bands.

Statistical Analysis
Ridge Regression
The relation between the full set of 124 spectral bands on
one hand and the vegetation parameters biomass and LAI on
the other hand is determined using Ridge regression (Hastie
et al., 2001). This is a linear multiple regression method,
which searches for the minimum of squared prediction
errors, while at the same time limiting the squared sums of
the regression coefficients. In situations with many corre-
lated predictor variables, like the spectral bands in hyper-
spectral images, regression coefficients become poorly
determined and exhibit high variance, which is solved by
imposing a size constraint, penalty, on the coefficients. The
criterion minimized in ridge regression (RSS) is:

(4)RSS(l) � �
n

i�1
�yi � yî�

2 

� l �
p

j�1
 b

2
j

�hspectral � �
s
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TABLE 2. NUMBER OF SEGMENTS (N)
RESULTING FROM SEGMENTATION WITH

DIFFERENT SCALE PARAMETERS (SCALE)

Scale N

1 pixel 943966
5 8763
10 3752
15 2800
20 2458
25 2286
30 2203
35 2147
40 2103
50 2067
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where � controls the amount of shrinkage of the regression
coefficients, n is the number of observations, y is the
dependent variable and the regression prediction, p is the 
number of equivalent independent variables (bands), and �j
stands for the jth regression coefficient. It should be noted
that the intercept is not penalized, and that predictors are
standardized before ridge regression is applied.

The size constraint of the regression coefficients relative
to the regression residual sum of squares is determined by �.
There is an inverse, non-linear relation between � and the
effective degrees of freedom (DF) of the regression coeffi-
cients. These degrees of freedom can be viewed as the
number of independent regression coefficients fitted. With �
equal to 0, ridge regression is equal to ordinary multiple
linear regression with df equal to the number of parameters
(bands). By increasing �, DF will decrease (Hastie et al.,
2001, p. 63, Equation 3.50). The coefficient � needs to be
tuned using cross validation.

Ridge regression was applied to raw, i.e., non-trans-
formed measurements of LAI and biomass. Some remarks
about the potential of transformations will be given in the
discussion.

Cross Validation
The optimal value for � of the Ridge regression functions
was determined using generalized cross validation (GCV). GCV
is a convenient approximation to leave-one-out cross valida-
tion for linear models. GCV values were calculated for each
data set for the same range of � values. The value of GCV is
equal to the residual variance, so implying that lower GCV
values indicate better performance. Ridge regression and GCV
computations were done using (a modified version of) the
“ridge.lm” function in the MASS library (Venables and Ripley,
2002) of R, Version 2.3.0 (Ihaka and Gentleman, 1996). The
modification addresses the computation of GCV, and can be
obtained from the authors.

ŷ

Distribution of Observations Over Segments
As mentioned above, the observations were collected in the
field using a nested sampling approach. The distribution of
individual observations over specific segments was not
controlled, as the segments were not available ahead of the
fieldwork. For small segments (scale parameter 5), the
maximum number of observations in a segment amounted to
5, for large segments (scale parameter 50), it amounted to 35.
In the statistical analysis no special measures were taken to
compensate for the fact that multiple observations could lie
in a single segment, as (a) the observations were taken using
a nested but still random sampling scheme, and (b) each
single observations is expected to contain the same amount
of information.

Results
In this study, we investigated the importance of scale of
image objects for quantitative mapping of structural
vegetation parameters. A Mediterranean study area was
carefully selected displaying high spatial variability of
vegetation cover, aboveground biomass, and leaf area
index, while the number of dominant species was limited
to four. The spatial variability of vegetation parameters in
this mixed evergreen forest is caused by the short-range
variation of geologic substrate and soil resulting in signifi-
cant differences in water and nutrient availability. The
statistical properties of the vegetation illustrate this high
variation (Table 1). It is therefore anticipated that the
differences between LAI and aboveground biomass found in
this study, will also be valid for other areas. The optimal
object size is strongly related to the spatial patterns of
vegetation, which in turn are dependent on the spatial
arrangement of environmental parameters like geologic
substrate, soil, and topography. The object size is therefore
considered to be site specific.
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Plate 1. Example of segmentation with different scale parameters (indicated in the upper left corners)
overlaid on a subset of the HyMap image (RGB: 783 nm, 662 nm, 539 nm).
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The results of the cross validation of the Ridge regres-
sion are given in Figures 2 and 3 for Leaf Area Index and
Biomass, respectively. For both parameters, ten graphs are
provided showing from top-left to lower-right, the results for
individual pixels to scale parameter 50. For layout reasons,
the graphs for scale parameter 45 are not shown. However,
in both cases these curves do confirm the trend shown by
scale parameters 40 and 50.

The vertical axis shows the GCV values, while the
horizontal axis shows the degrees of freedom, DF. The lowest
points of the graphs indicate the best performance for a
given scale parameter. For Leaf Area Index, scale parameter
15 shows the lowest GCV minimum of the ten graphs in

Figure 2. The GCV value of 0.38 corresponds to 54 percent
unexplained variance, which means an R2 of 0.46. For
biomass, scale parameter 10 shows the lowest GCV value of
the ten graphs in Figure 3. The value of 23000 results in an
R2 of 0.47.

For biomass (Figure 3), optimal performance increases
from individual pixels to scale parameter 10, after which it
decreases again with larger scale parameters. For leaf area
index the initial trend is not so straightforward, with scale
parameter 5 showing better results than scale parameter 10,
although the optimum at scale parameters 15 or 20 is clearly
better. From 25 on, the performance shows a clear decreas-
ing performance.

Total variance in the independent variables, in this case
the spectral bands, determines the relation between the size
constraint of the regression coefficients �, and DF. Lower
total variance results in a smaller range of possible DF
values. This shows in the smaller range covered by DF with
increasing scale parameters (Figures 2 and 3), as the �
values were held constant for all segment sizes, except for
the single pixel situation which was run with a smaller �
range.

Discussion
This study relates quantitative field estimates of above-
ground biomass and leaf area index with hyperspectral
observations acquired with HyMap. The values estimated in
the field match the results in other Mediterranean studies.
For aboveground biomass, we found values ranging from 0.1
to 1347 Mg ha�1 with a mean value of 167 Mg ha�1. Mooney
(1981) found 270 Mg ha�1 for oak forest while Rapp and
Loissant (1981) studied maquis with 43.6 Mg ha�1. De Jong
et al. (2003) found values of 9.5 Mg ha�1 for garrigue, 73 Mg
ha�1 for maquis, and 169 Mg ha�1 for oak forest. Very few
allometric formulas are available to estimate biomass in
natural or Mediterranean vegetation. Given the destructive
nature and the complicated logistics of a study to determine
them, this is understandable, but it would be satisfying to
have more formulas in order to get a better idea of their
quality.

The LAI values found in this study, range from 0.4 to
5.4 with an average of 3.2, and a standard deviation of 0.84.
These results match well with the mean LAI value of 2.96
found by Caraux Garson and Lacaze (2003) in the Puéch-
abon area, which is located 40 km NE of the Peyne area 
in a similar region. Jonckheere et al. (2004) give a brief
literature review on global LAI values for forests and report
values between 0.4 and 16.9, well covering the values
found the Peyne area. In general, the highest values are
reported for coniferous canopies, which are absent in the
Peyne catchment.

The effect of image segment size, i.e., the spectral
heterogeneity, on the mapping accuracy of these vegetation
parameters is investigated. The study shows that the
different levels of segmentation result in different accuracy
values for estimation of Leaf Area Index and biomass.
Segmentation compared to the one-pixel situation shows
that segmentation indeed does provide better estimates, i.e.,
object-oriented parameter estimation performs better than
per-pixel estimation.

By segmenting the images, information is lost. Up to a
certain level, this is expected to be noise stemming either
from spectral noise or spatial mismatch. Spectral noise can
stem from sensor noise, atmospheric influences, or the
effects of the point-spread function (Schowengerdt, 1997). At
a certain aggregation level, the lost information might turn
out to be relevant. This would show in worse results, in our
case in higher GCV values. Both phenomena can be observed
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Figure 2. The Generalized Cross Validation (GCV) of Leaf
Area Index plotted against the degrees of freedom for
10 different object definitions. GCV is equal to the
unexplained variance, lower values indicate better
estimates. Each plot corresponds to a scale parameter
of Table 2.

Figure 3. The Generalized Cross Validation (GCV) of
aboveground biomass plotted against the degrees of
freedom for 10 different object definitions. GCV is equal
to the unexplained variance, lower values indicate
better estimates. Each plot corresponds to a scale
parameter of Table 2.
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in the GCV curves for the different scale parameters. Predic-
tions improved until scale parameter 10 for biomass and
until 15 for leaf area index, and decreased with subsequent
scale parameter values.

This study does not aim at determining the exact scale
parameters that yield optimal predictions, but merely at
showing that different heterogeneity values yield different
results. The optimal scale parameter could be derived by
increasing it with smaller increments. The method used for
matching field observations to highly correlated segment
characteristics was ridge regression, a variety of linear
regression that deals with multi-collinearity. Arguably, 
this method works best when regression residuals are
homoscedastic and independent. Especially for biomass,
homoscedasticity is very unlikely and one might suggest to
log-transform biomass ahead of the analysis. The interpreta-
tion would however change for such a model, and back-
transformation of predictions might become an issue. 
We assumed independence based on the fact that random
sampling was used. However, samples were spatially nested,
and some spatial correlation is inevitably present. Although
part of this is explained by the segment properties, in a
more thorough analysis one might suggest to take residual
spatial correlation into account.

The optimal scale of observation (i.e., object size with
object-oriented image analysis) depends on: (a) the scale of the
phenomenon of interest, the processes which are responsible
for it and how they can be scaled up, and (b) on the spatial
heterogeneity of the landscape. Biomass and leaf area index
data were collected on the same plots, so within the same
landscape. Still they show different optimal object sizes,
implying that their steering processes/factors show different
spatial patterns. This is explicable since the LAI of these
evergreens is steered by the seasonal cycle of solar radiation
and precipitation while actual standing biomass is the result
of long-term accumulation of yearly net growth. The optimal
pixel size for images from which the objects are derived
should be considerably smaller than the optimal object size.
The imposed squareness of the pixels (Fisher, 1997) would
otherwise prohibit proper representation of the object shapes.

The band setting for the segmentation was held constant
in this study by using the first 20 MNF bands for all segmenta-
tions. However, different wavelengths show different spatial
variances (Atkinson and Aplin, 2004), which will affect object
definition. A combination of different object sizes (spectral
heterogeneity) with different band combinations was not
considered here but will be a future research topic.

Conclusions
In this paper, we studied the effect of increasing heterogeneity
in object definition on the accuracy of predicting biomass and
leaf area index values from a HyMap image. We used Ridge
regression to establish equations and by a leave-one-out cross
validation the accuracies of the estimations were determined.
We aimed at answering two questions: (a) How does the
spatial definition of objects affect the statistical relationships
between field observations and spectral object properties? and
(b) Is this effect similar for different vegetation parameters?

The values found for aboveground biomass and leaf area
index match literature values well, suggesting a more general
validity of our conclusions. It is concluded that different
heterogeneities indeed result in different estimation accuracy
values. Starting with individual pixels and increasing the
object size, the predictions improve until an optimum is
reached, after which increasing object size results in worse
predictions. The question what determines the optimal
setting (e.g., landscape heterogeneity, vegetation density,
pixel and plot size), is the next issue to study.

Furthermore, our results show that leaf area index and
aboveground biomass show different optima for their predic-
tions; aboveground biomass is optimally predicted at scale
parameter 10, while leaf area index shows highest prediction
accuracy at scale parameter 15. This difference probably
reflects the different patterns of their steering processes.

With per-pixel image analysis, working with different
scales means working with differently sized squares. Both the
surface objects reflected in an image and the spectral bands of
that image may, and usually will, display a variation of
optimal sizes, while the shape of the surface objects hardly
ever is square. Now with object-oriented image analysis, the
fixed shape and the uniform size of the image objects has
been eliminated, but the number of possible tessellations has
increased infinitely. Here lies a major challenge for image
analysts.
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