
Windows CE 6.0
Kernel

Overview of the Windows CE
Kernel

Windows CE Overview

Targeted to embedded devices

PPC, Smartphones, STBs, Thin clients,
AutoPC, PMC, control panels, robots, etc.

Benefits
Flexible, adaptable, configurable, small

Supports ARM, MIPS, SH, x86

Real-time

Simple driver model

Power conscious

Shared source

Tiered licensing model

Windows CE Overview

However, CE 5.0 has a memory
model limitation

It only supports 32 processes and 32
MB per process

These limitations has now been
removed with CE 6.0

New Virtual Memory Model

CE 5.0 Overview

CE 5.0 Memory Model

Virtual Memory Map

2 GB for Kernel

Single 2 GB mapping for all processes

Divided up into 32 MB “slots”

32 Process Limit

Each process has one 32MB slot

32 slots for processes

Shared memory

Upper half of user space is shared memory

Read / Write by all processes

CE 5.0 Memory Model

32 Slots for

Processes

Single

2 GB VM

for all

Processes

2 GB

Kernel

Space

Execution Slot and

Shared DLL Slot

Shared Memory

Kernel

 Slot 0 – Execution

 Slot 1 – ROM DLLs

 Slot 3 – Filesys.exe

 Slot 4 – Device.exe

 Slot 5 – GWES.exe

 Slot 7 – Services.exe

 Slot 31

 Slot 32

:

:

 Slot 7

 Slot 2 – NK.exe

CE 6.0 Overview

The 6.0 kernel
2 GB of Virtual Memory per process

32,000 processes

Unified Kernel

Critical OS components moved into kernel
space

Improved system performance

Increased security and robustness

High degree of backwards compatibility

CE 6.0 Memory Model

Process Code

User VM

User VM

Memory Mapped files

User DLLs

Kernel

Filesystem

GWES

Drivers

32 K

Process

2 GB

per

Process

2 GB

Kernel

Space

User Space

Process space

1GB per process

Shared System Heap

255 MB

RAM Backed Mapfiles

256 MB

User Space

2 Gigabytes

Each process

has its own

mapping

0x00000000

0x80000000

0x40000000

Executable code and data

VM Allocations

File Back Mapfiles

All DLLs – code and data

Same mapping across all processes

Data pages are unique physical pages

Code pages are shared

RAM Backed Mapfiles

Mapped at fixed locations for

better backwards compatibility

Shared User DLLs

512 MB

R/W for OS components

Read only for user process

Kernel Space

Static Mapped Cached

512 MB

Static Mapped Uncached

512 MB

Kernel VM

256 MB

Kernel VM

(if supported by CPU)

256 MB

Object Store (128 MB)

CPU Specific VM

Kernel Space

2 Gigabytes

Fixed mapping

independent of

user space

Kernel XIP DLLs (128 MB)

Cached access to

physical memory

Uncached access to

physical memory

All XIP DLLs in kernel

Ram file system & ram registry

Kernel Virtual Memory

Shared by all kernel

servers and drivers

System Trap Area

0xFFFFFFFF

0x80000000

OS Layout Changes

Moving critical drivers, file system, and
graphical window manager into the kernel

Kernel version of Coredll.dll

Same APIs without the thunks

Benefit

Greatly reduces the overhead of system calls
between these components

Reduces overhead of all calls from user
space to kernel space

Increase code sharing between base OS
services

CE 6.0 OS Layout

OAL.DLL
FILESYS NETW ORK

DEVICE.DLL
KERNEL.DLL

Applications

SHELL

Drivers

Hardw are

Boot Loader

COREDLL / W INSOCK / COMMCTRL / W IN INET / COMMDLG

Kernel

Space

User

Space

KCOREDLL.DLL

ServicesServicesServices
User Mode

Drivers

GW ES

SERVICES.EXE
ServicesServicesServicesServices UDEVICE.EXE

Performance & Size
Improvements expected in process
switching

Same performance

Thread Switching

Memory Allocation

System Calls

Some slow down with interprocess calls

Now involves data marshalling

Size increase is less then 5%

CE 5.0 System Calls

Application makes call

PSL jump

Kernel

Validates parameters

Maps Service into Slot 0

Possible Cache Flush

Calls into to the service

Service

Runs

Returns to Kernel

Kernel

Maps App into Slot 0

Possible cache flush

Returns to App

App Service

Kernel

CE 6.0 Beta System Calls

Application makes call

Same PSL jump

App stays mapped during
the call

Kernel

Copies call to kernel
thread

Validates parameters

Calls into to the service

Service

Runs

Returns directly to the app

App

Service Kernel

Kernel Security
Enhancements

Security

Early Threat Modeling of the kernel

Working with MS Secure Windows
Team and penetration testers

Double checked design to tighten up
System Calls

Handles

Exception Handling

Memory Allocation

Loader

and many other components

Security and Robustness Features

Improved parameter validation for system calls

Per-Process Page and Handle tables
Greatly improves Process isolation

Improves code robustness

Secure Stack
System calls run on special kernel side stacks

Safe guards system calls from stack tampering

Robust Heaps
Heap control structures separated from heap data

Safe Remote Heaps for OS components
OS servers can open heaps in user process

R/W for servers, R/only for user

Performance optimization and safe from tampering

CE 6.0 Features

CE 6.0 Features

Per-Process Page Tables

Each process has its own page table

Pointers are unique to each process

Enables the new virtual memory model

Increases security

Per-Process Handle Tables

Each process has its own handle table

Handles have reference and usage counts

Increases security

Increased programming robustness

no more stale handles

CE 6.0 Features Continued
Large Memory Mapped File Support

Support for mapping views into very large files

Up to 64 bit files

Big benefit for in car navigation and multimedia

Secure Loader

Enables of control of which executable and DLLs get
loaded by the system

Uses encrypted signatures to identify the files

Foundation for a code based security model

Security is based on knowing what code is
running instead of who the user is

CE 6.0 Features Continued

User Mode UI service

Displays UI in user mode for kernel mode
drivers

Keeps drivers from launching windows from
inside the kernel

Virtual Alloc Ex functions

Memory management functions for drivers

Just like the Windows XP APIs

Enables drivers to allocate memory in user
processes

CE 6.0 Features Continued

Marshalling Helper Functions

Helper functions for interprocess data
marshalling

Services that help drivers to handle user data

Monotonic clock

Always forward going clock independent of
user clock

Enables services to calculate elapsed time

CE 6.0 Features Continued

User Mode Services and Drivers

Run all services and some drivers in User
Mode host

Saves kernel resources and increases
robustness

Separate OAL

OAL has been split from the kernel

Allows independent updates

Kernel updates and OEM OAL updates can be
done independently

Enables easier device updates

Compatibility

CPU Requirements

Currently the same as Windows 5.0
ARMV4I and above

MIPSII with sync instructions (ll, sc).

x86

SH4

Best performance on CPU’s with Physical
tagged caches

Virtual-tag-cached CPU have performance
penalty and limitation on virtual mappings

Same hardware as 5.0

Compatibility
Binary compatibility for applications is the key goal

The general structure of the OS will be the same

Will maintain compatibility in CoreDLL
Minimize impact on Win32 APIs

Changes hidden in API libraries

Continue to shared DLL code
Well behaved SDK applications

Should work with little or no changes

Apps using undocumented techniques

Will likely have to be modified

Such as passing handles or pointers between
processes

Main changes will be in how drivers access client memory

Some drivers will migrate with little work

Porting incompatible Apps

Some applications will need work

Improper use of handles

nonstandard memory usage

Use of some CE specific APIs

Remove old tricks and workarounds
Such as handle sharing and pointer tricks

Our verification approach

Ported Windows Mobile 5.0 to CE 6.0 Beta

Running 5.0 commercial applications on 6.0
Beta

Other porting

Drivers will require some work

System calls

Use of worker threads

Access to caller’s memory

BSP will need some work

New memory mappings

Changes to OAL to support image
updates

Drivers Overview

Drivers
Two types of drivers will be supported

Kernel Mode for performance

User Mode for robustness

The overall structure of the drivers remains the
same

Main changes are in how the drivers access client
memory

No SetKMode or SetProcPermissions

Kernel Mode Drivers
Drivers are loaded in the kernel space by
device.dll

Have full access to the kernel’s data structures
and memory

APIs used do not change

Link to a kernel version of coredll.dll called
kcoredll.dll

Thin layer for API compatibility

Directly links the services together without thunk layer

Drivers needing the best performance should be
kernel mode

Such as those with lots of quick calls

User Mode Drivers
Loaded by udevices.exe

Mostly the same APIs as Kernel Mode

No access to kernel structures or memory

Kernel will marshal parameters during system
calls

Examples

Expansion buses like USB and SDIO

Keyboard and touch

Drivers where performance is not a factor should
consider moving to user mode

Called less often and do more work

Handling Calls
App memory already mapped correctly

Can access it without re-mapping pointers

Don’t need – These APIs are being removed

SetProcPermissions

MapPtrToProcess, UnMapPtr

Accessing callers memory

CopyIn / CopyOut

ReadProcessMemory / WriteProcessMemory

Virtual Alloc Ex APIs

Marshalling Helper Library

Provides APIs for handling user data

OAL changes

OAL split from kernel

Merged into NKLoader

Enables separate updates

Overall OAL structure remains the same

Same OEM functions

Access kernel through kernel interface

Changes to the OAL initialization

Memory mappings for new memory model

Real-Time

CE is a Real-Time OS

Real time is being able to respond to an
interrupt in a bounded maximum time

Analysis by OMAC User Group shows that 95% of
real-time applications require between 0.5ms to 10
ms respond time

And tolerate 10% variations, or 50µs to 1ms jitter

Interrupt every
.5 ms to 10 ms

50µs to 1 ms Jitter

Typical Real-Time Requirements

Real-Time Kernel

CE achieves real-time by the design of the
kernel and the drivers

The majority of the kernel and driver code can be
interrupted

The uninterruptible parts are small discrete units so
interrupts can be handled quickly

The length of the largest part is biggest latency

CE 6.0 Beta kernel and drivers are designed
with the same real-time constraints

Windows CE Test Results
Respond time test using the following
configuration

Samsung SMDK2410 development board

200 MHz ARM with 16x16 cache

Windows CE 5.0 with full UI

Running a WMV video

ISR starts IST starts
minimum 1.2 µs 31.7 µs

average 3.3 µs 67.2 µs

Maximum 13.3 µs 103.0 µs

Time in microseconds (µs)

Windows CE Real-Time Test Results

CE 6.0 Real-Time

The new kernel has the same
response times as the current kernel

May even perform slightly better
because of reduced system call
overhead

Performance between app and kernel will be
better

Drivers and services in services.exe will be
slightly worse

