# University of Washington, Bothell CSS 342: Data Structures, Algorithms, and Discrete Mathematics Induction Problem Examples 

Some practice problems to help with learning induction.

1) Find a formula for $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{n}$ by examining the values of this expression for small values of $n$. Use mathematical induction to prove your result.
2) Find a formula for $1 /\left(1^{*} 2\right)+1 /\left(2^{*} 3\right)+\ldots+1 / n(n+1)$ by examining the value of this expression for small values of $n$. Use mathematical induction to prove your result.
3) Prove that $7^{n}-1$ is divisible by 6 , for $=1,2, \ldots$
4) Show that postage of six cents or more can be achieved by using only 2-cent and 7-cent stamps.
5) What is wrong with this "proof" by strong induction?
"Theorem" For every nonnegative integer $\mathrm{n}, 5 \mathrm{n}=0$. Basis Step: 5 * $0=0$.
Inductive Step: Suppose that $5 \mathrm{j}=0$ for all nonnegative integers j with $0<=\mathrm{j}<=\mathrm{k}$. Write $\mathrm{k}+1=\mathrm{i}+\mathrm{j}$, where i and j are natural numbers less than $\mathrm{k}+1$. By the induction hypothesis, $5(\mathrm{k}+1)=5(\mathrm{i}+\mathrm{j})=5 \mathrm{i}+5 \mathrm{j}=0+0=0$.

## SOLUTION

1) Find a formula for $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{n}$ by examining the values of this expression for small values of $n$. Use mathematical induction to prove your result.

$$
\begin{aligned}
& P(1)=1 / 2 \\
& P(2)=1 / 2+1 / 4=3 / 4 \\
& P(3)=1 / 2+1 / 4+1 / 8=7 / 8 \\
& \ldots \\
& P(n)=1 / 2+1 / 4+1 / 8+\ldots 1 / 2^{n}=\left(2^{n}-1\right) / 2^{n}
\end{aligned}
$$

1) Proof using induction:
$P(1): 1 / 2=\left(2^{1}-1\right) / 2^{1}$
2) Assume $P(k)$ is true and prove $P(k+1)$.
$P(k)->P(k+1)$.
Given: $P(K)=1 / 2+1 / 4+1 / 8+\ldots 1 / 2^{k}=\left(2^{k}-1\right) / 2^{k}$
Prove: $P(K+1)=1 / 2+1 / 4+1 / 8+\ldots 1 / 2^{k}+1 / 2^{k+1}=\left(2^{k+1}-1\right) / 2^{k+1}$
Substitution:

$$
\left(2^{k}-1\right) / 2^{k}+1 / 2^{k+1}=\left(2^{k+1}-1\right) / 2^{k+1}
$$

Multiply both sides by $2^{k+1}$

$$
2\left(2^{k}-1\right)+1=\left(2^{k+1}-1\right)
$$

Simplify

$$
\begin{aligned}
& 2^{k+1}-2+1=2^{k+1}-1 \\
& 2^{k+1}-1=2^{k+1}-1
\end{aligned}
$$

qed.

