Propositional Logic

Prove the following three Boolean equations:

(Note: ! means NOT(\neg); & means AND($^{\wedge}$); and | menas OR(v)

- a) |A & B| A & |B = (|A| |B) & (A|B)
- b) (A & B | C) & B = A & B & !C | !A & B & C | A & B & C
- c) A & B | A & B & C | A & !B = A

For each pair of propositions P and Q, state whether $P \equiv Q$. (Note: ! means NOT(\neg); & means AND($^{\land}$); and | menas OR(v)

- a) P = p, Q = p | q
- b) $P = p \rightarrow q, Q = !p | q$
- c) $P = p \rightarrow q, Q = !q \rightarrow !p$
- d) $P = (p \rightarrow q) \& (q \rightarrow r), Q = p \rightarrow r$
- e) $P = (p \rightarrow q) \rightarrow r, Q = p \rightarrow (q \rightarrow r)$

Expand the following Boolean equations with De Morgan's Laws

- a) f = !(A | B) & !(A & B & C) & !(!A & C)
- b) f = !((A & B | !B & C) | (B & !C | !A & B))
- c) f = !((A & B | !B & C) & (A & C | !A & !C))

Date:	Group #:
Group Members: (Circle the group representative name)	