Creating code that can be unit tested
By: Diego Martinez

In many programs you need to develop code that will later be used by a main routine in an executable.
If you have learned about Test Driven Development you know the advantages that come along with Unit Testing your
code; just to name a few: better maintainability, less risk in changes to the code and assurance that your code is working

appropriately.

Here is a tutorial on how to create a visual studio solution that allows you to take advantage of Unit Testing:
1. Normally you will create a project where you will have all your code and another project for your Unit Test. The
problem with this approach is that your unit test is not able to see the code in your main project, therefore we need
a way to encapsulate the code and use it in the main routine and the Unit Test.
This can be accomplished by creating a library like this:

- xm‘“—a

T

-H"\-\.

T

-H-'\-\.

Unit Test

2. Create a Visual Studio Solution that includes 3 projects:
a. Anempty "windows application" project for your EXE or DLL.
b. A static library project for the code classes that you want to unit test.
C. Aunit test project.

3. Add a reference from the UnitTest project and the Main project to MyCode.lib.
To do it, right click over the Reference folder and click Add Reference...

Solution Explorer

R o-s5@ L=

'11 Solution ToTestUnitTests' (3 projects)
4 5%/ LibRunner

b Ml Debug

b LibRunner.cpp

4 %! MyCode
M Debug

B ReadMe.txt

4 &% UnitTests
4 =W References

Add Refe
#:

Now you need to include the location of the library into the "Additional Include Directories" of the dependent

projects.

To do it, right click on the project folder and go to properties. Under C/C++ -> Additional Include directories
"$(SolutionDir)<YourLibName>;"

UnitTests Property Pages

Configuration: | Active(Debug)

4 Configuration Properties
General
Debugging
VC++ Directories
P C/Cs++
b Linker
I Manifest Toal
P XML Document Generator
I Browse Information
> Build Events
[Custom Build Step
> Code Analysis

? X
~ | Platform: |Active(Win32) 2 Caonfiguration Manager...
Additional Include Directories $(SolutionDir)MyCode; $ (VClnstallDir) UnitTest\include; % (Additionalln
Additional #using Directories
Debug Information Format Program Database for Edit And Continue (/ZI)

Commeon Language RunTime Support
Consume Windows Runtime Extension

Suppress Startup Banner Yes (/nologo)
Warning Level Level3 (/W3)
Treat Warnings As Errors MNo (/WX-)
Warning Version

SDL checks

Multi-processor Compilation

Additional Include Directories
Specifies one or more directories to add to the include path; separate with semi-colons if more than one. (/I[path])

In your files (unit Test or Main Project) #include your .h files as you normally will do.

Notes
If you have classes with the same names as system classes wrap your code inside a namespace.

Resources
http://blogs.msdn.com/b/jsocha/archive/2010/11/19/writing-unit-tests-in-visual-studio-for-native-c.aspx
https://msdn.microsoft.com/en-us/library/ms243171(v=vs.150).aspx#

Walkthrough: Creating and Using a Static Library (C++)

http://blogs.msdn.com/b/jsocha/archive/2010/11/19/writing-unit-tests-in-visual-studio-for-native-c.aspx
https://msdn.microsoft.com/en-us/library/ms243171(v=vs.150).aspx
https://msdn.microsoft.com/en-us/library/ms235627.aspx

