Classification

Bayes ^a C ass ^e ^s ian Classifiers

Bayesian classification

- A probabilistic framework for solving classification problems.
	- Used where class assignment is not deterministic, i.e. a particular set of attribute values will sometimes be associated with one class, sometimes with another.
	- Requires estimation of posterior probability for each class, given a set of attribute values:

 $p(C_i | x_1, x_2, \cdots, x_n)$ for each class C_i \cdots , X

 $-$ Then use decision theory to make predictions $\,$ for a new sample **x**

Bayesian classification

• Conditional probability:

Example of Bayes theorem

- **Given:**
	- $-$ A doctor knows that meningitis causes stiff neck 50% of the time
	- Prior probability of any patient having meningitis is 1/50,000
	- $-$ Prior probability of any patient having stiff neck is 1/20 $\,$
- \bullet If a patient has stiff neck, what's the probability he/she has meningitis?

$$
p(M \mid S) = \frac{p(S \mid M) p(M)}{p(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002
$$

Bayesian classifiers

- \bullet Treat each attribute and class label as random variables.
- Given a sample **x** with attributes $(x_1, x_2, ..., x_n)$:
	- $-$ Goal is to predict class *C.*
	- $-$ Specifically, we want to find the value of C_{i} that maximizes *p*(*C*_i | *x*₁, *x*₂, … , *x*_n).
- Can we estimate $p(C_i | x_1, x_2, ..., x_n)$ directly from data?

Bayesian classifiers

Approach:

• Compute the posterior probability $p(C_i | x_1, x_2, ..., x_n)$ for each value of *Ci* using Bayes theorem:

$$
p(C_i | x_1, x_2, ..., x_n) = \frac{p(x_1, x_2, ..., x_n | C_i) p(C_i)}{p(x_1, x_2, ..., x_n)}
$$

- Choose value of C_i that maximizes *p*($C_i | x_1, x_2, ..., x_n$)
- **Equivalent to choosing value of C_i that maximizes** $p(x_1, x_2, \ldots, x_n | C_i) p(C_i)$

(*We can ignore denominator – why?*)

- Easy to estimate priors $p(C_i)$ from data. (*How?*)
- \bullet • The real challenge: how to estimate $p(x_1, x_2, ..., x_n | C_i)$?

- How to estimate $p(x_1, x_2, \ldots, x_n | C_i)$?
- In the general case, where the attributes dependencies, this requires estimating the full joint distribution $p($ x_{1} , x_{2} , \dots , x_{n}) for each class C_{i} .
- There is almost never enough data to confidently make such estimates.

• Assume independence among attributes x_j when class is given:

 $p(X_1, X_2, \ldots, X_n | C_i) = p(X_1 | C_i) p(X_2 | C_i) \ldots p(X_n | C_i)$

- Usually straightforward and practical to estimate $p(x_j | C_i)$ for all *xj* and *Ci*.
- \bullet New sample is classified to C_i if *p*(*Ci*) Π *p*(*xj* | *Ci*) is maximal.

How to estimate p ($x_i | C_i$) from data?

• Class priors:
\n
$$
p(C_i) = N_i / N
$$
\n
$$
p(No) = 7/10
$$
\n
$$
p(Yes) = 3/10
$$

• For discrete attributes: where | *x_{ji}* | is number of
instances in class *C_i* having attribute value *xj*

Examples:

$$
p(\text{Status} = \text{Married} \mid \text{No}) = 4/7
$$

$$
p(\text{Refund} = \text{Yes} \mid \text{Yes}) = 0
$$

- For continuous attributes:
	- Discretize the range into bins
		- ◆ replace with an ordinal attribute
	- $\mathcal{L}_{\mathcal{A}}$ Two-way split: (*xi* < v) or (*xi* > v)
		- ◆ replace with a binary attribute
	- Probability density estimation:
		- ◆ assume attribute follows some standard parametric probability distribution (usually a Gaussian)
		- \bullet use data to estimate parameters of distribution (e.g. mean and variance)
		- \bullet once distribution is known, can use it to estimate the conditional probability $p(\ x_j | \ C_i)$

How to estimate p ($x_i | C_i$) from data?

$$
P(x_j | C_i) = \frac{1}{\sqrt{2\pi\sigma_{ji}^2}} e^{-\frac{(x_j - \mu_{ji})^2}{2\sigma_{ji}^2}}
$$

 $-$ one for each (x_{j} , C_{i}) pair

- \circ $\qquad \bullet$ For (Income | Class = No):
	- $-$ sample mean = 110 $\,$
	- sample variance = 2975

$$
p(\text{ Income} = 120 \mid \text{No}) = \frac{1}{\sqrt{2\pi} (54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072
$$

Example of using naïve Bayes classifier

Given a Test Record:

x = (Refund = No, Status = Married, Income ⁼120K)

naive Bayes classifier:

```
p( Refund = Yes | No ) = 3/7p( Refund = No | No ) = 4/7p( Refund = Yes | Yes ) = 0p( Refund = No | Yes ) = 1p( Marital Status = Single | No ) = 2/7p( Marital Status = Divorced | No ) = 1/7p( Marital Status = Married | No ) = 4/7
p( Marital Status = Single | Yes ) = 2/7p( Marital Status = Divorced | Yes ) = 1/7p( Marital Status = Married | Yes ) = 0For Taxable Income:
If Class = No: sample mean = 110sample variance = 2975
If Class = Yes: sample mean = 90sample variance = 25
```

```
• p(\mathbf{x} \mid \text{Class} = \text{No}) = p(\text{Refund} = \text{No} \mid \text{Class} = \text{No})×
p( Married | Class = No )
                                ×
p( Income = 120K | Class = No )
                           = 4/7 \times 4/7 \times 0.0072 = 0.0024
```

```
• p(\mathbf{x} \mid \text{Class} = \text{Yes } ) = p(\text{ Refund} = \text{No } | \text{ Class} = \text{Yes})×
p( Married | Class = Yes )
                                     × p( Income = 120K | Class = Yes )
                               = 1 \times 0 \times 1.2 \times 10<sup>-9</sup> = 0
```
p(**x** | No) *p*(No) > *p*(**x** | Yes) *p*(Yes)

therefore *p*(No | **x**) > *p*(Yes | **x**)

 \Rightarrow Class = No

Naïve Bayes classifier

- Problem: if one of the conditional probabilities is zero, then the entire expression becomes zero.
- This is a significant practical problem, especially when training samples are limited.
- Ways to improve probability estimation:

Original:
$$
p(x_j | C_i) = \frac{N_{ji}}{N_i}
$$

\nc: number of classes
\nLaplace: $p(x_j | C_i) = \frac{N_{ji} + 1}{N_i + c}$
\nc: number of classes
\n*p*: prior probability
\nm: parameter
\nm-estimate: $p(x_j | C_i) = \frac{N_{ji} + mp}{N_i + m}$

Example of Naïve Bayes classifier

*X***: attributes**

*M***: class = mammal**

*N***: class = non-mammal**

$$
p(X \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06
$$

$$
p(X \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042
$$

$$
p(X \mid M) p(M) = 0.06 \times \frac{7}{20} = 0.021
$$

$$
p(X \mid N) p(N) = 0.004 \times \frac{13}{20} = 0.0027
$$

*p***(** *X* **|** *M* **)** *p***(** *M* **) >** *p***(** *X* **|** *N* **)** *p***(** *N* **)**

=> mammal

Summary of naïve Bayes

- Robust to isolated noise samples.
- Handles missing values by ignoring the sample during probability estimate calculations.
- Robust to irrelevant attributes.
- *NOT* robust to redundant attributes.
	- Independence assumption does not hold in this case.
	- Use other techniques such as Bayesian Belief Networks (BBN).