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Bayesian classification

A probabilistic framework for solving classification 
problems.problems.
– Used where class assignment is not 

deterministic, i.e. a particular set of attribute , p
values will sometimes be associated with one 
class, sometimes with another.

– Requires estimation of posterior probability for 
each class, given a set of attribute values:

for each class Ci

– Then use decision theory to make predictions 
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Bayesian classification

Conditional probability:
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Bayes theorem: likelihood prior probability
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probability evidence



Example of Bayes theorem

Given: 
– A doctor knows that meningitis causes stiff neck 50% of theA doctor knows that meningitis causes stiff neck 50% of the 

time
– Prior probability of any patient having meningitis is 1/50,000
– Prior probability of any patient having stiff neck is 1/20

If a patient has stiff neck what’s the probabilityIf a patient has stiff neck, what s the probability 
he/she has meningitis?
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Bayesian classifiers

Treat each attribute and class label as random 
variables.

Given a sample x with attributes ( x1, x2, … , xn ):p ( 1, 2, , n )
– Goal is to predict class C.
– Specifically we want to find the value of Ci thatSpecifically, we want to find the value of Ci that 

maximizes p( Ci | x1, x2, … , xn ).

Can we estimate p( Ci | x1, x2, … , xn ) directly from 
data?
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Bayesian classifiers

Approach:
Compute the posterior probability p( Ci | x1, x2, … , xn ) for p p p y p( i | 1, 2, , n )
each value of Ci using Bayes theorem:
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C oose a ue o Ci a a es
p( Ci | x1, x2, … , xn )

Equivalent to choosing value of Ci that maximizes
p( x x x | C ) p( C )p( x1, x2, … , xn | Ci ) p( Ci )
(We can ignore denominator – why?)

Easy to estimate priors p( Ci ) from data.  (How?)

Jeff Howbert    Introduction to Machine Learning       Winter 2012               6

y p p( i ) ( )
The real challenge: how to estimate p( x1, x2, … , xn | Ci )?



Bayesian classifiers

How to estimate p( x1, x2, … , xn | Ci )?How to estimate p( x1, x2, … , xn | Ci )?

In the general case, where the attributes xj have g , j
dependencies, this requires estimating the full joint 
distribution p( x1, x2, … , xn ) for each class Ci.

There is almost never enough data to confidently 
make such estimatesmake such estimates.
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Naïve Bayes classifier

Assume independence among attributes xj when class is p g j
given:    
p( x1, x2, … , xn | Ci ) = p( x1 | Ci ) p( x2 | Ci ) … p( xn | Ci )

Usually straightforward and practical to estimate p( xj | Ci ) 
for all x and Cfor all xj and Ci.

New sample is classified to Ci ifNew sample is classified to Ci if
p( Ci ) Π p( xj | Ci )

is maximal.
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How to estimate p ( xj | Ci ) from data?

Class priors:
p( Ci ) = Ni / NTid Refund Marital 

Status
Taxable 
Income Evade

c c c

p( No ) = 7/10
p( Yes ) = 3/10

Status Income Evade

1 Yes Single 125K No 

2 No Married 100K No 

For discrete attributes:
p( xj | Ci ) = | xji | / Ni

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes j j
where | xji | is number of 
instances in class Ci having 
attribute value xj

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes attribute value xj

Examples:
p( Status = Married | No ) = 4/7

9 No Married 75K No 

10 No Single 90K Yes 
10 
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p( Refund = Yes | Yes ) = 0



How to estimate p ( xj | Ci ) from data?

For continuous attributes: 
– Discretize the range into binsDiscretize the range into bins 

replace with an ordinal attribute
– Two-way split: ( xi < v ) or ( xi > v )i i

replace with a binary attribute
– Probability density estimation:

assume attribute follows some standard parametric 
probability distribution (usually a Gaussian)
use data to estimate parameters of distributionuse data to estimate parameters of distribution
(e.g. mean and variance)
once distribution is known, can use it to estimate 
the conditional probability p( x | C )
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the conditional probability p( xj | Ci )



How to estimate p ( xj | Ci ) from data?

Gaussian distribution:Tid Refund Marital 
Status 

Taxable 
Income Evade

1 Yes Single 125K No 2

2
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– one for each ( xj, Ci ) pair

g

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No

2
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For ( Income | Class = No ):

4 Yes Married 120K No

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No For ( Income | Class = No ):
– sample mean = 110
– sample variance = 2975

7 Yes Divorced 220K No

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes10 No Single 90K Yes
10 
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Example of using naïve Bayes classifier

)120K Income Married,  Status No,Refund ( ====x
Given a Test Record:

p( x | Class = No ) = p( Refund = No | Class = No)
× p( Married | Class = No )
× p( Income = 120K | Class = No )

= 4/7 × 4/7 × 0 0072 = 0 0024= 4/7 × 4/7 × 0.0072 = 0.0024

p( x | Class = Yes ) = p( Refund = No | Class = Yes)
× p( Married | Class = Yes )

p( Income 120K | Class Yes )× p( Income = 120K | Class = Yes )
= 1 × 0 × 1.2 × 10-9 = 0

p( x | No ) p( No ) > p( x | Yes ) p( Yes )

therefore p( No | x ) > p( Yes | x )
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=> Class = No



Naïve Bayes classifier

Problem: if one of the conditional probabilities is 
zero, then the entire expression becomes zero.zero, then the entire expression becomes zero.
This is a significant practical problem, especially 
when training samples are limited.g p
Ways to improve probability estimation:
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Example of Naïve Bayes classifier

Name Give Birth Can Fly Live in Water Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals

X: attributes

M: class = mammal
y

whale yes no yes no mammals
frog no no sometimes yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
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N: class = non-mammal

cat yes no no yes mammals
leopard shark yes no yes no non-mammals
turtle no no sometimes yes non-mammals
penguin no no sometimes yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals 02107060)()|(
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salamander no no sometimes yes non-mammals
gila monster no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals

l l
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eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class
yes no yes no ?

20

p( X | M ) p( M ) > p( X | N ) p( N )

=> mammal
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Summary of naïve Bayes

Robust to isolated noise samples.p
Handles missing values by ignoring the sample 
during probability estimate calculations.
Robust to irrelevant attributes.
NOT robust to redundant attributes.
– Independence assumption does not hold in 

this case.
U th t h i h B i B li f– Use other techniques such as Bayesian Belief 
Networks (BBN).
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