Machine Learning

Di i li d i imensionality Re duction

slides thanks to Xiaoli Fern (CS534, Oregon State Univ., 2011)

Dimensionality reduction

- Many modern data domains involve huge numbers of features / dimensions
	- $-$ Documents: thousands of words, millions of bigrams
	- $\mathcal{L}_{\mathcal{A}}$ - Images: thousands to millions of pixels
	- –- Genomics: thousands of genes, millions of DNA polymorphisms

Why reduce dimensions?

• High dimensionality has many costs

- $\mathcal{L}_{\mathcal{A}}$ Redundant and irrelevant features degrade performance of some ML algorithms
- \sim Difficulty in interpretation and visualization
- Computation may become infeasible ◆ what if your algorithm scales as O(n^3 t if your algorithm scales as *O(n*³)?

–- Curse of dimensionality

Extract Latent Linear Features

- Linearly project n-d data onto a k -d space $-$ e.g., project space of 10⁴ words into 3-dimensions
- There are infinitely many k-d subspaces that we can project the data into, which one should we choose
- This depends on the task at hand
	- If supervised learning, we would like to maximize the separation among classes: Linear discriminant analysis (LDA)
	- If unsupervised, we would like to retain as much data variance as possible: principal component analysis (PCA)

LDA for two classes $\mathbf{w} = S_{w}^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$

• Projecting data onto one dimension that maximizes the ratio of between-class scatter and total within-class scatter

Unsupervised Dimension Reduction

- Consider data without class labels
- Try to find a more compact representation of the data

 $3d \Rightarrow 2d$

- Assume that the high dimensional data actually resides in a inherent low-dimensional space
- Additional dimensions are just random noise
- Goal is to recover these inherent dimensions and discard noise dimensions

Geometric picture of principal components (PCs)

Goal: to account for the variation in the data in as few dimensions as possible

Geometric picture of principal components (PCs)

- The 1st PC is the projection direction that maximizes the \bullet variance of the projected data
- The 2nd PC is the projection direction that is orthogonal to the 1st PC and maximizes the variance

Conceptual Algorithm

• Find a line such that when the data is projected onto that line, it has the maximum variance

Conceptual Algorithm

• Find a new line, orthogonal to the first, that has maximum projected variance:

Repeat until m lines

• The projected position of a point on these lines gives the coordinates in the m-dimensional reduced space

Steps in principal component analysis

- Mean center the data
- Compute covariance matrix Σ
- Calculate eigenvalues and eigenvectors of Σ
	- $-$ Eigenvector with largest eigenvalue λ_{1} is 1st $-$ Eigenvector with largest eigenvalue λ_{1} is 1 $^{\rm st}$ principal component (PC)
	- $\mathcal{L}_{\mathcal{A}}$ $-$ Eigenvector with k^th largest eigenvalue λ_k is k^th PC
	- λ_k / Σ_i λ_i = proportion of variance captured by K^{th} PC

Applying a principal component analysis

- Full set of PCs comprise a new orthogonal basis for feature space, whose axes are aligned with the maximum variances of original data.
- Projection of original data onto first *k* PCs gives a reduced dimensionality representation of the data.
- Transforming reduced dimensionality projection back into original space gives a reduced dimensionality *reconstruction* of the original data.
- \bullet Reconstruction will have some error, but it can be small and often is acceptable given the other benefits of dimensionality reduction.

PCA example

PCA example

Jeff Howbert **Introduction to Machine Learning** Minter 2012 15

Dimension Reduction Using PCA

- Calculate the covariance matrix of the data S \bullet
- Calculate the eigen-vectors/eigen-values of S \bullet
- Rank the eigen-values in decreasing order ٠
- Select eigen-vectors that retain a fixed percentage of the ٠ variance, (e.g., 80%, the smallest d such that $\frac{\sum_{i=1}^{d} \lambda_i}{\sum_{i} \lambda_i} \ge 80\%$)

Choosing the dimension k

- The eigenvectors (columns of Φ) form a basis
- We can look at the expansion

$$
\tilde{\mathbf{x}} = \mu_{\mathbf{x}} + \sum_{j=1}^{k} (\phi_j^T \mathbf{x}) \phi_j,
$$

and examine the residual $\|\mathbf{x} - \tilde{\mathbf{x}}\|$

Example: Face Recognition

- An typical image of size 256 x 128 is described by $n = 256 \times 128 = 32768$ dimensions
- Each face image lies somewhere in this highdimensional space
- Images of faces are generally similar in overall configuration, thus
	- They cannot be randomly distributed in this space
	- $-$ We should be able to describe them in a much lowdimensional space

PCA for Face Images: Eigenfaces

- Database of 128 carefully-aligned faces.
- Here are the mean and the first 15 eigenvectors.
- Each eigenvector can be shown as an image
- These images are facelike, thus called eigenface

Face Recognition in Eigenface space (Turk and Pentland 1991)

- Nearest Neighbor classifier in the eigenface space
- Training set always contains 16 face images of 16 people, all taken under the same conditions of lighting, head orientation, and image size
- Accuracy:
	- variation in lighting: 96%
	- variation in orientation: 85%
	- $-$ variation in image size: 64%

Face Image Retrieval

- Left-top image is the query image
- Return 15 nearest \bullet neighbor in the eigenface space
- Able to find the same person despite
	- different expressions
	- variations such as glasses

PCA: a useful preprocessing step

- Helps reduce computational complexity.
- Can help supervised learning.
	- $-$ Reduced dimension \Rightarrow simpler hypothesis space.
	- $-$ Smaller VC dimension \Rightarrow less risk of overfitting.
- PCA can also be seen as noise reduction.

• Caveats:

- $-$ Fails when data consists of multiple separate clusters.
- $\mathcal{L}_{\mathcal{A}}$ $-$ Directions of greatest variance may not be most informative (i.e. greatest classification power).

Practical Issue: Scaling Up

- Covariance of the image data is BIG!
	- $-$ size of $\Sigma = 32768 \times 32768$
	- finding eigenvector of such a matrix is slow.
- SVD comes to rescue!
	- Can be used to compute principal components
	- $-$ Efficient implementations available, e.g., Matlab svd

Singular Value Decomposition: X=USVT

Singular Value Decomposition: X=USVT

SVD for PCA

- Create centered data matrix X
- Solve SVD: $X = USV^T$
- Columns of V are the eigenvectors of Σ sorted from largest to smallest eigenvalues $-$ select the first k columns as our principal components

Nonlinear Methods

- Data often lies on or near a nonlinear low-dimensional curve
- We call such low dimension structure manifolds

ISOMAP: Isometric Feature Mapping (Tenenbaum et al. 2000)

- A nonlinear method for dimensionality reduction \bullet
- Preserves the global, nonlinear geometry of the data by \bullet preserving the geodesic distances
- Geodesic: originally geodesic means the shortest route \bullet between two points on the surface of the manifold

ISOMAP

- \cdot Two steps
	- 1. Approximate the geodesic distance between every pair of points in the data
		- The manifold is locally linear
		- Euclidean distance works well for points that are close enough
		- For the points that are far apart, their geodesic distance can be approximated by summing up local Euclidean distances
	- 2. Find a Euclidean mapping of the data that preserves the geodesic distance

Geodesic Distance

- Construct a graph by
	- Connecting i and j if
		- d(i, j) < ε (ε-isomap) or
		- i is one of j's k nearest neighbors (k-isomap)
	- $-$ Set the edge weight equal d(i, j) $-$ Euclidean distance
- Compute the Geodesic distance between any two points as the **shortest path** distance

Compute the Low-Dimensional Mapping

• We can use Multi-Dimensional scaling (MDS), a class of statistical techniques that

Given:

 $n \times n$ matrix of dissimilarities between n objects

Outputs: a coordinate configuration of the data in a low-dimensional space R^d whose Euclidean distances closely match given dissimilarities.

ISOMAP on Swiss Roll Data

ISOMAP Examples

ISOMAP Examples в Bottom loop articulation A, \mathbf{z} λ $\boldsymbol{\mathcal{Z}}$ 2 L 2_e $\overline{}$ 2 $\overline{\mathcal{Z}}$ Σ 2 $|2|$ $\overline{\alpha}$ \overline{z} v^* 2 Top arch articulation l Ə \mathcal{Q} 2 3 G 2 ສ

Per Tom Dietterich:

"Methods that can be applied directly to data without requiring a great deal of time-consuming data preprocessing or careful tuning of the learning procedure."

Off-the-shelf criteria

slide thanks to Tom Dietterich (CS534, Oregon State Univ., 2005)

Practical advice on machine learning

from Andrew Ng at Stanford

slides:

http://cs229.stanford.edu/materials/ML-advice.pdf

video:

http://www.youtube.com/v/sQ8T9b-uGVE

(starting at 24:56)