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Anomaly Detection

Some slides taken or adapted from:

“Anomaly Detection: A Tutorial”

Arindam Banerjee, Varun Chandola, Vipin Kumar, Jaideep Srivastava, University of Minnesota

Aleksandar Lazarevic, United Technology Research Center
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Anomalies and outliers
are essentially
the same thing:

objects that are different from most other objects

The techniques used for detection are the same.

Anomaly detection
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� Historically, the field of statistics tried to find and 
remove outliers as a way to improve analyses.

� There are now many fields where the outliers / 
anomalies are the objects of greatest interest.

– The rare events may be the ones with the greatest 

impact, and often in a negative way.

Anomaly detection
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� Data from different class of object or underlying 
mechanism

– disease vs. non-disease

– fraud vs. not fraud

� Natural variation

– tails on a Gaussian distribution

� Data measurement and collection errors

Causes of anomalies
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Structure of anomalies

� Point anomalies

� Contextual anomalies

� Collective anomalies
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� An individual data instance is anomalous with 
respect to the data

Point anomalies
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Contextual anomalies

� An individual data instance is anomalous within a context

� Requires a notion of context

� Also referred to as conditional anomalies *

* Song, et al, “Conditional Anomaly Detection”, IEEE Transactions on Data and Knowledge Engineering, 2006. 

Normal

Anomaly
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Collective anomalies

� A collection of related data instances is anomalous

� Requires a relationship among data instances

– Sequential data

– Spatial data

– Graph data

� The individual instances within a collective anomaly are 

not anomalous by themselves

anomalous subsequence
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Applications of anomaly detection

� Network intrusion

� Insurance / credit card fraud

� Healthcare informatics / medical diagnostics

� Industrial damage detection

� Image processing / video surveillance 

� Novel topic detection in text mining

� …
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Intrusion detection

� Intrusion detection 

– Monitor events occurring in a computer system or network and 
analyze them for intrusions

– Intrusions defined as attempts to bypass the security 
mechanisms of a computer or network  

� Challenges

– Traditional intrusion detection systems are
based on signatures of known attacks and
cannot detect emerging cyber threats

– Substantial latency in deployment of newly 
created signatures across the computer
system

� Anomaly detection can alleviate these 
limitations
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Fraud detection

� Detection of criminal 

activities occurring in 

commercial organizations.

� Malicious users might be:

– Employees

– Actual customers

– Someone posing as a 

customer (identity theft)

� Types of fraud

– Credit card fraud

– Insurance claim fraud

– Mobile / cell phone fraud

– Insider trading

� Challenges

– Fast and accurate real-time 

detection

– Misclassification cost is very 

high
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Healthcare informatics

� Detect anomalous patient records

– Indicate disease outbreaks, instrumentation errors, etc.

� Key challenges

– Only normal labels available

– Misclassification cost is very high

– Data can be complex: spatio-temporal
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Industrial damage detection

� Detect faults and failures in complex industrial systems, 

structural damages, intrusions in electronic security 

systems, suspicious events in video surveillance, abnormal 

energy consumption, etc.

– Example: aircraft safety

� anomalous aircraft (engine) / fleet  usage

� anomalies in engine combustion data

� total aircraft health and usage management

� Key challenges

– Data is extremely large, noisy, and unlabelled

– Most of applications exhibit temporal behavior

– Detected anomalous events typically require immediate intervention
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Image processing

� Detecting outliers in a image 

monitored over time

� Detecting anomalous regions 

within an image

� Used in 

– mammography image analysis

– video surveillance 

– satellite image analysis

� Key Challenges

– Detecting collective anomalies

– Data sets are very large
Anomaly
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Use of data labels in anomaly detection

� Supervised anomaly detection

– Labels available for both normal data and anomalies

– Similar to classification with high class imbalance

� Semi-supervised anomaly detection

– Labels available only for normal data

� Unsupervised anomaly detection

– No labels assumed

– Based on the assumption that anomalies are very rare 

compared to normal data
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Output of anomaly detection

� Label

– Each test instance is given a normal or anomaly label

– Typical output of classification-based approaches

� Score

– Each test instance is assigned an anomaly score

� allows outputs to be ranked

� requires an additional threshold parameter
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Variants of anomaly detection problem

� Given a dataset D, find all the data points

x ∈ D with anomaly scores greater than some 
threshold t.

� Given a dataset D, find all the data points
x ∈ D having the top-n largest anomaly scores.

� Given a dataset D, containing mostly normal 
data points, and a test point x, compute the 
anomaly score of x with respect to D.
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� No labels available

� Based on assumption that anomalies are very 
rare compared to “normal” data

� General steps

– Build a profile of “normal” behavior

� summary statistics for overall population

� model of multivariate data distribution

– Use the “normal” profile to detect anomalies

� anomalies are observations whose characteristics

differ significantly from the normal profile

Unsupervised anomaly detection
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� Statistical

� Proximity-based

� Density-based

� Clustering-based

[ following slides illustrate these techniques for

unsupervised detection of point anomalies ]

Techniques for anomaly detection
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Statistical outlier detection

Outliers are objects that are fit
poorly by a statistical model.

� Estimate a parametric model describing the 
distribution of the data 

� Apply a statistical test that depends on 

– Properties of test instance

– Parameters of model (e.g., mean, variance)

– Confidence limit (related to number of expected outliers)
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Statistical outlier detection

� Univariate Gaussian distribution

– Outlier defined by z-score > threshold
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� Multivariate Gaussian distribution

– Outlier defined by Mahalanobis distance > threshold

Statistical anomaly detection

Distance

Euclidean Mahalanobis

A 5.7 35

B 7.1 24
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Grubbs’ test

� Detect outliers in univariate data

� Assume data comes from normal distribution

� Detects one outlier at a time, remove the outlier, 
and repeat

– H0: There is no outlier in data

– HA: There is at least one outlier

� Grubbs’ test statistic: 

� Reject H0 if:
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Likelihood approach

� Assume the dataset D contains samples from a 
mixture of two probability distributions: 

– M (majority distribution) 

– A (anomalous distribution)

� General approach:

– Initially, assume all the data points belong to M

– Let Lt(D) be the log likelihood of D at time t

– For each point xt that belongs to M, move it to A

� Let Lt+1 (D) be the new log likelihood.

� Compute the difference, ∆ = Lt(D) – Lt+1 (D)

� If ∆ > c  (some threshold), then xt is declared as an anomaly 

and moved permanently from M to A
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Likelihood approach

� Data distribution, D = (1 – λ) M + λ A

� M is a probability distribution estimated from data

– Can be based on any modeling method (naïve Bayes, 

maximum entropy, etc)

� A is initially assumed to be uniform distribution

� Likelihood at time t:
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Statistical outlier detection

� Pros

– Statistical tests are well-understood and well-

validated.

– Quantitative measure of degree to which object is an 

outlier.

� Cons

– Data may be hard to model parametrically.

� multiple modes

� variable density

– In high dimensions, data may be insufficient to 

estimate true distribution.
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Outliers are objects far away from other objects.

� Common approach:

– Outlier score is distance to kth nearest neighbor.

– Score sensitive to choice of k.

Proximity-based outlier detection
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Proximity-based outlier detection
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Proximity-based outlier detection
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Proximity-based outlier detection
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Proximity-based outlier detection
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Proximity-based outlier detection

� Pros

– Easier to define a proximity measure for a dataset 

than determine its statistical distribution.

– Quantitative measure of degree to which object is an 

outlier.

– Deals naturally with multiple modes.

� Cons

– O(n2) complexity.

– Score sensitive to choice of k.

– Does not work well if data has widely variable density.
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Outliers are objects in regions of low density.

� Outlier score is inverse of density around object.

� Scores usually based on proximities.

� Example scores:

– Reciprocal of average distance to k nearest neighbors:

– Number of objects within fixed radius d (DBSCAN).

– These two example scores work poorly if data has 

variable density.  

Density-based outlier detection
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� Relative density outlier score (Local Outlier 
Factor, LOF)

– Reciprocal of average distance to k nearest 

neighbors, relative to that of those k neighbors.

Density-based outlier detection
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Density-based outlier detection

relative density (LOF) outlier scores
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� Pros

– Quantitative measure of degree to which object is an 

outlier.

– Can work well even if data has variable density.

� Cons

– O(n2) complexity

– Must choose parameters

� k for nearest neighbor

� d for distance threshold

Density-based outlier detection
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Outliers are objects that do not
belong strongly to any cluster.

� Approaches:

– Assess degree to which object belongs to any cluster.

– Eliminate object(s) to improve objective function.

– Discard small clusters far from other clusters.

� Issue:

– Outliers may affect initial formation of clusters.

Cluster-based outlier detection
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Assess degree to which object
belongs to any cluster.

� For prototype-based clustering (e.g. k-means), 
use distance to cluster centers.

– To deal with variable density clusters, use relative 

distance:

� Similar concepts for density-based or 
connectivity-based clusters.

Cluster-based outlier detection
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Cluster-based outlier detection

distance of points from nearest centroid
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Cluster-based outlier detection

relative distance of points from nearest centroid
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Eliminate object(s) to improve objective function.

1) Form initial set of clusters.

2) Remove the object which most improves 
objective function.

3) Repeat step 2) until …

Cluster-based outlier detection
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Discard small clusters far from other clusters.

� Need to define thresholds for “small” and “far”.

Cluster-based outlier detection
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� Pro:

– Some clustering techniques have O(n) complexity.

– Extends concept of outlier from single objects to 

groups of objects.

� Cons:

– Requires thresholds for minimum size and distance.

– Sensitive to number of clusters chosen.

– Hard to associate outlier score with objects.

– Outliers may affect initial formation of clusters.

Cluster-based outlier detection
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� Data is unlabelled, unlike usual SVM setting.

� Goal: find hyperplane (in higher-dimensional 
kernel space) which encloses as much data as 
possible with minimum volume.

– Tradeoff between amount of data enclosed and 

tightness of enclosure; controlled by regularization of 

slack variables.

One-class support vector machines
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One-class SVM vs. Gaussian envelope

Images from http://scikit-learn.org/stable/modules/outlier_detection.html
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LIBSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

-s 2 -t 2 -g 50 -n 0.35

One-class SVM demo
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�Three groups of features
–Basic features of individual TCP connections

�source & destination IP  Features 1 & 2

�source & destination port  Features 3 & 4

�Protocol Feature 5

�Duration Feature 6

�Bytes per packets Feature 7

�number of bytes Feature 8

–Time based features
�For the same source (destination) IP address, number of unique destination (source) 

IP addresses inside the network in last T seconds – Features 9 (13)

�Number of connections from source (destination) IP to the same destination (source) 
port in last T seconds – Features 11 (15)

–Connection based features
�For the same source (destination) IP address, number of unique destination (source) 

IP addresses inside the network in last N connections - Features 10 (14)

�Number of connections from source (destination) IP to the same destination (source) 
port in last N connections - Features 12 (16)

flagdst … service …

h1            http          S0

h1            http          S0

h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

syn flood

normal

existing features existing features 
uselessuseless

flagdst … service …

h1            http          S0

h1            http          S0

h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

syn flood

normal

flagdst … service …

h1            http          S0

h1            http          S0

h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

syn flood

normal

existing features existing features 
uselessuseless

dst … service …

h1            http          S0

h1            http          S0

h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

flag  %S0

70

72

75

0

0

0

construct features with construct features with 
high information gainhigh information gain

dst … service …

h1            http          S0

h1            http          S0

h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

flag  %S0

70

72

75

0

0

0

dst … service …

h1            http          S0

h1            http          S0

h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

flag  %S0

70

72

75

0

0

0

construct features with construct features with 
high information gainhigh information gain

Anomaly detection on real network data
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Typical anomaly detection output

score    srcIP sPort    dstIP dPort protocolflagspackets  bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

37674.69 63.150.X.253 1161 128.101.X.29 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0

26676.62 63.150.X.253 1161 160.94.X.134 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0

24323.55 63.150.X.253 1161 128.101.X.185 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0

21169.49 63.150.X.253 1161 160.94.X.71 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0

19525.31 63.150.X.253 1161 160.94.X.19 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0

19235.39 63.150.X.253 1161 160.94.X.80 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0

17679.1 63.150.X.253 1161 160.94.X.220 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0

8183.58 63.150.X.253 1161 128.101.X.108 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.58 0 0 0 0 0

7142.98 63.150.X.253 1161 128.101.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

5139.01 63.150.X.253 1161 128.101.X.142 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

4048.49 142.150.Y.101 0 128.101.X.127 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

4008.35 200.250.Z.20 27016 128.101.X.116 4629 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

3657.23 202.175.Z.237 27016 128.101.X.116 4148 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

3450.9 63.150.X.253 1161 128.101.X.62 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

3327.98 63.150.X.253 1161 160.94.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

2796.13 63.150.X.253 1161 128.101.X.241 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

2693.88 142.150.Y.101 0 128.101.X.168 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

2683.05 63.150.X.253 1161 160.94.X.43 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

2444.16 142.150.Y.236 0 128.101.X.240 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

2385.42 142.150.Y.101 0 128.101.X.45 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

2114.41 63.150.X.253 1161 160.94.X.183 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

2057.15 142.150.Y.101 0 128.101.X.161 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

1919.54 142.150.Y.101 0 128.101.X.99 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

1634.38 142.150.Y.101 0 128.101.X.219 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

1596.26 63.150.X.253 1161 128.101.X.160 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

1513.96 142.150.Y.107 0 128.101.X.2 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

1389.09 63.150.X.253 1161 128.101.X.30 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

1315.88 63.150.X.253 1161 128.101.X.40 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0

1279.75 142.150.Y.103 0 128.101.X.202 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

1237.97 63.150.X.253 1161 160.94.X.32 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

1180.82 63.150.X.253 1161 128.101.X.61 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

� Anomalous connections that correspond to the “slammer” worm

� Anomalous connections that correspond to the ping scan

� Connections corresponding to Univ. Minnesota machines connecting to “half-life” game servers
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� Data often streaming, not static

– Credit card transactions

� Anomalies can be bursty

– Network intrusions

Real-world issues in anomaly detection
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An excerpt from advice given by a machine
learning veteran on StackOverflow:

“ … you are training and testing on the same data.
A kitten dies every time this happens.”

Quote of the day


