Anomaly Detection

Some slides taken or adapted from:

"Anomaly Detection: A Tutorial"

Arindam Banerjee, Varun Chandola, Vipin Kumar, Jaideep Srivastava, University of Minnesota

Aleksandar Lazarevic, United Technology Research Center

Jeff Howbert

Introduction to Machine Learning

Anomaly detection

Anomalies and outliers are essentially the same thing:

objects that are different from most other objects

The techniques used for detection are the same.

2

Anomaly detection

- Historically, the field of statistics tried to find and remove outliers as a way to improve analyses.
- There are now many fields where the outliers / anomalies are the objects of greatest interest.
 - The rare events may be the ones with the greatest impact, and often in a negative way.

Causes of anomalies

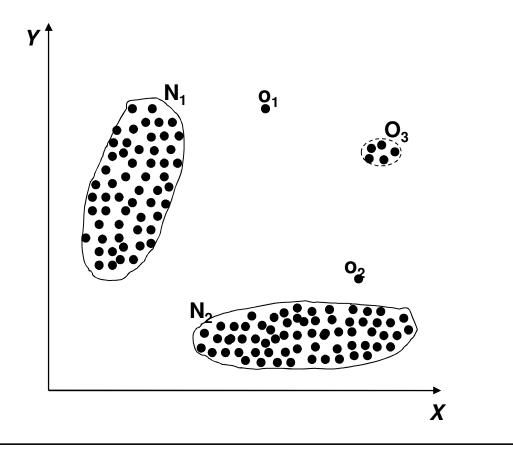
- Data from different class of object or underlying mechanism
 - disease vs. non-disease
 - fraud vs. not fraud
- Natural variation
 - tails on a Gaussian distribution
- Data measurement and collection errors

Structure of anomalies

- Point anomalies
- Contextual anomalies
- Collective anomalies

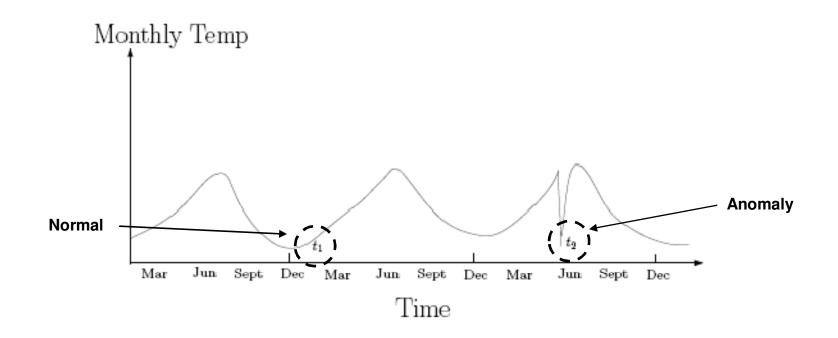
Point anomalies

 An individual data instance is anomalous with respect to the data



Contextual anomalies

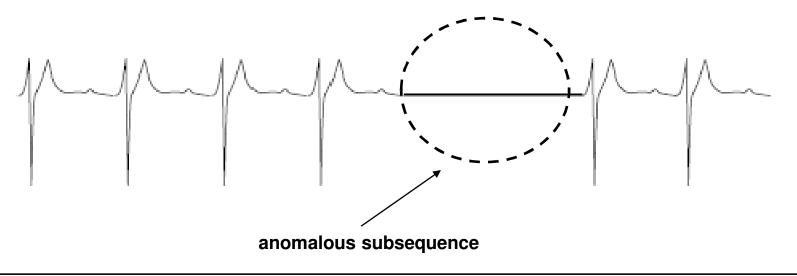
- An individual data instance is anomalous within a context
- Requires a notion of context
- Also referred to as conditional anomalies *



* Song, et al, "Conditional Anomaly Detection", IEEE Transactions on Data and Knowledge Engineering, 2006.

Collective anomalies

- A collection of related data instances is anomalous
- Requires a relationship among data instances
 - Sequential data
 - Spatial data
 - Graph data
- The individual instances within a collective anomaly are not anomalous by themselves



8

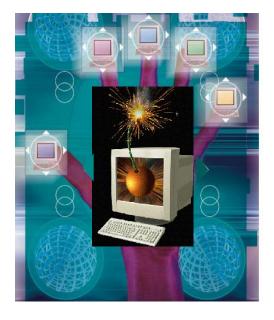
Applications of anomaly detection

- Network intrusion
- Insurance / credit card fraud
- Healthcare informatics / medical diagnostics
- Industrial damage detection
- Image processing / video surveillance
- Novel topic detection in text mining

• ...

Intrusion detection

- Intrusion detection
 - Monitor events occurring in a computer system or network and analyze them for intrusions
 - Intrusions defined as attempts to bypass the security mechanisms of a computer or network
- Challenges
 - Traditional intrusion detection systems are based on signatures of known attacks and cannot detect emerging cyber threats
 - Substantial latency in deployment of newly created signatures across the computer system
- Anomaly detection can alleviate these limitations



Fraud detection

- Detection of criminal activities occurring in commercial organizations.
- Malicious users might be:
 - Employees
 - Actual customers
 - Someone posing as a customer (identity theft)
- Types of fraud
 - Credit card fraud
 - Insurance claim fraud
 - Mobile / cell phone fraud
 - Insider trading

Challenges

- Fast and accurate real-time detection
- Misclassification cost is very high

Healthcare informatics

- Detect anomalous patient records
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key challenges
 - Only normal labels available
 - Misclassification cost is very high
 - Data can be complex: spatio-temporal

Industrial damage detection

- Detect faults and failures in complex industrial systems, structural damages, intrusions in electronic security systems, suspicious events in video surveillance, abnormal energy consumption, etc.
 - Example: aircraft safety
 - anomalous aircraft (engine) / fleet usage
 - anomalies in engine combustion data
 - total aircraft health and usage management
- Key challenges
 - Data is extremely large, noisy, and unlabelled
 - Most of applications exhibit temporal behavior
 - Detected anomalous events typically require immediate intervention

Image processing

- Detecting outliers in a image monitored over time
- Detecting anomalous regions within an image
- Used in
 - mammography image analysis
 - video surveillance
 - satellite image analysis
- Key Challenges
 - Detecting collective anomalies
 - Data sets are very large

Use of data labels in anomaly detection

- Supervised anomaly detection
 - Labels available for both normal data and anomalies
 - Similar to classification with high class imbalance
- Semi-supervised anomaly detection
 - Labels available only for normal data
- Unsupervised anomaly detection
 - No labels assumed
 - Based on the assumption that anomalies are very rare compared to normal data

Output of anomaly detection

Label

- Each test instance is given a normal or anomaly label
- Typical output of classification-based approaches

Score

- Each test instance is assigned an anomaly score
 - allows outputs to be ranked
 - requires an additional threshold parameter

Variants of anomaly detection problem

- Given a dataset D, find all the data points
 x ∈ D with anomaly scores greater than some threshold t.
- Given a dataset D, find all the data points $\mathbf{x} \in \mathbf{D}$ having the top-n largest anomaly scores.
- Given a dataset D, containing mostly normal data points, and a test point x, compute the anomaly score of x with respect to D.

Unsupervised anomaly detection

- No labels available
- Based on assumption that anomalies are very rare compared to "normal" data

General steps

- Build a profile of "normal" behavior
 - summary statistics for overall population
 - model of multivariate data distribution
- Use the "normal" profile to detect anomalies
 - anomalies are observations whose characteristics differ significantly from the normal profile

Techniques for anomaly detection

- Statistical
- Proximity-based
- Density-based
- Clustering-based

[following slides illustrate these techniques for unsupervised detection of point anomalies]

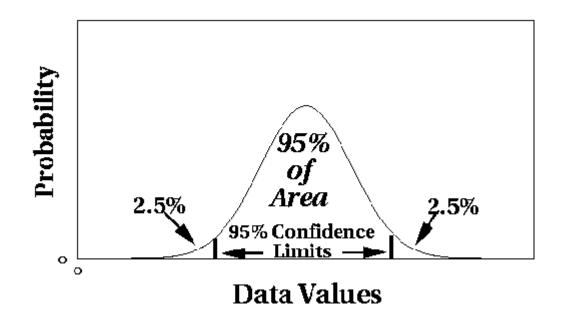
Statistical outlier detection

Outliers are objects that are fit poorly by a statistical model.

- Estimate a parametric model describing the distribution of the data
- Apply a statistical test that depends on
 - Properties of test instance
 - Parameters of model (e.g., mean, variance)
 - Confidence limit (related to number of expected outliers)

Statistical outlier detection

- Univariate Gaussian distribution
 - Outlier defined by z-score > threshold

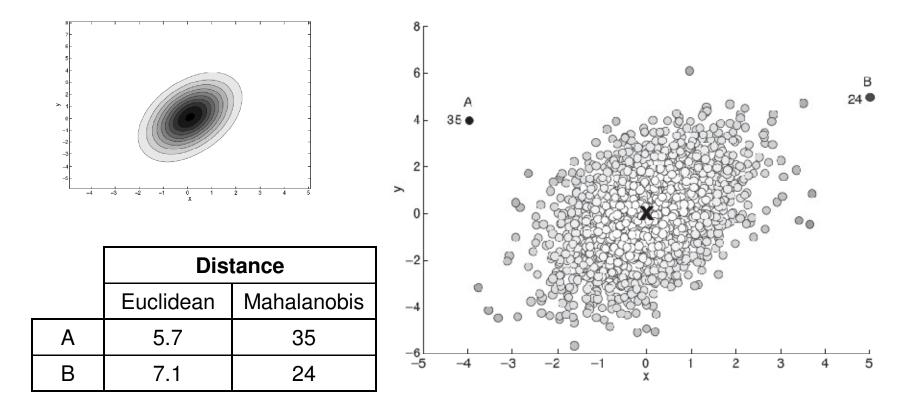


21

Statistical anomaly detection

Multivariate Gaussian distribution

Outlier defined by Mahalanobis distance > threshold



22

Grubbs' test

- Detect outliers in univariate data
- Assume data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
 - H₀: There is no outlier in data
 - H_A: There is at least one outlier
- Grubbs' test statistic:

$$x = \frac{\max \left| X - \overline{X} \right|}{s}$$

• Reject H₀ if: $G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N,N-2)}^2}{N-2+t_{(\alpha/N,N-2)}^2}}$

Likelihood approach

- Assume the dataset D contains samples from a mixture of two probability distributions:
 - M (majority distribution)
 - A (anomalous distribution)
- General approach:
 - Initially, assume all the data points belong to M
 - Let $L_t(D)$ be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, $\Delta = L_t(D) L_{t+1}(D)$

• If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Likelihood approach

- Data distribution, $D = (1 \lambda) M + \lambda A$
- M is a probability distribution estimated from data
 - Can be based on any modeling method (naïve Bayes, maximum entropy, etc)
- A is initially assumed to be uniform distribution
- Likelihood at time t:

$$L_{t}(D) = \prod_{i=1}^{N} P_{D}(x_{i}) = \left((1-\lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left(\lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right)$$
$$LL_{t}(D) = \left| M_{t} \right| \log(1-\lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + \left| A_{t} \right| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i})$$

25

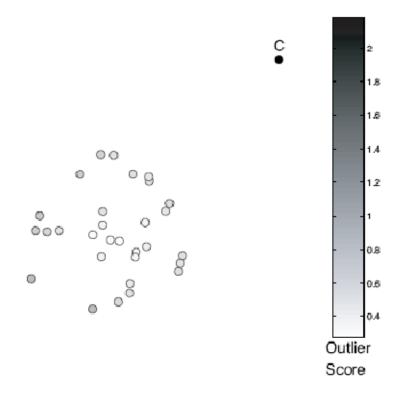
Statistical outlier detection

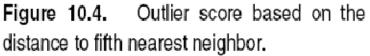
Pros

- Statistical tests are well-understood and wellvalidated.
- Quantitative measure of degree to which object is an outlier.
- Cons
 - Data may be hard to model parametrically.
 - multiple modes
 - variable density
 - In high dimensions, data may be insufficient to estimate true distribution.

Outliers are objects far away from other objects.

- Common approach:
 - Outlier score is distance to kth nearest neighbor.
 - Score sensitive to choice of *k*.





28

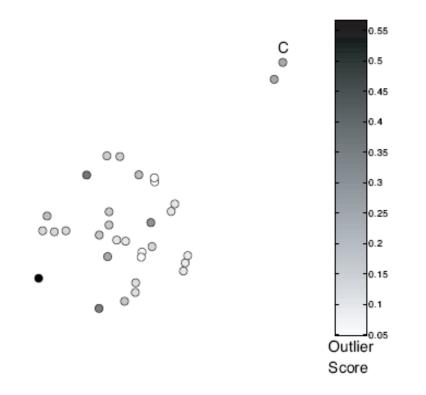


Figure 10.5. Outlier score based on the distance to the first nearest neighbor. Nearby outliers have low outlier scores.

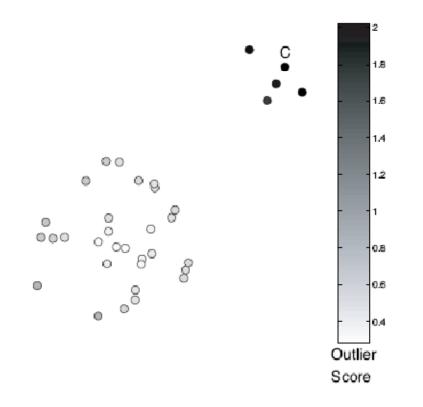
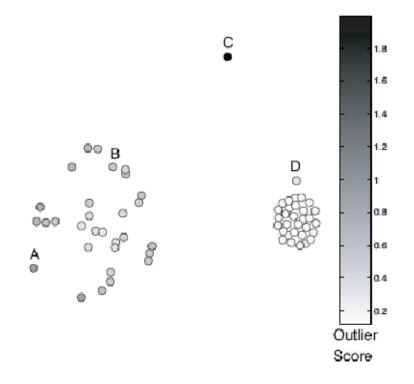
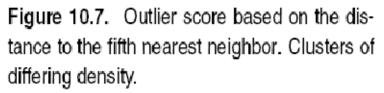


Figure 10.6. Outlier score based on distance to the fifth nearest neighbor. A small cluster becomes an outlier.





Pros

- Easier to define a proximity measure for a dataset than determine its statistical distribution.
- Quantitative measure of degree to which object is an outlier.
- Deals naturally with multiple modes.

Cons

- $O(n^2)$ complexity.
- Score sensitive to choice of *k*.
- Does not work well if data has widely variable density.

Outliers are objects in regions of low density.

- Outlier score is inverse of density around object.
- Scores usually based on proximities.
- Example scores:
 - Reciprocal of average distance to *k* nearest neighbors:

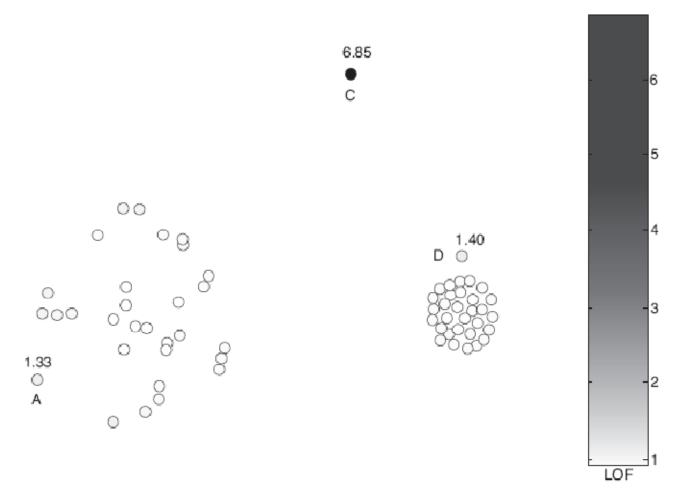
density(
$$\mathbf{x}, k$$
) = $\left(\frac{1}{k} \sum_{\mathbf{y} \in N(\mathbf{x}, k)} \text{distance}(\mathbf{x}, \mathbf{y})\right)^{-1}$

- Number of objects within fixed radius *d* (DBSCAN).
- These two example scores work poorly if data has variable density.

- Relative density outlier score (Local Outlier Factor, LOF)
 - Reciprocal of average distance to k nearest neighbors, relative to that of those k neighbors.

relative density(
$$\mathbf{x}, k$$
) = $\frac{\text{density}(\mathbf{x}, k)}{\frac{1}{k} \sum_{\mathbf{y} \in N(\mathbf{x}, k)} \text{density}(\mathbf{y}, k)}$

34



relative density (LOF) outlier scores

Pros

- Quantitative measure of degree to which object is an outlier.
- Can work well even if data has variable density.

Cons

- $O(n^2)$ complexity
- Must choose parameters
 - ♦ *k* for nearest neighbor
 - *d* for distance threshold

Outliers are objects that do not belong strongly to any cluster.

• Approaches:

- Assess degree to which object belongs to any cluster.
- Eliminate object(s) to improve objective function.
- Discard small clusters far from other clusters.

Issue:

- Outliers may affect initial formation of clusters.

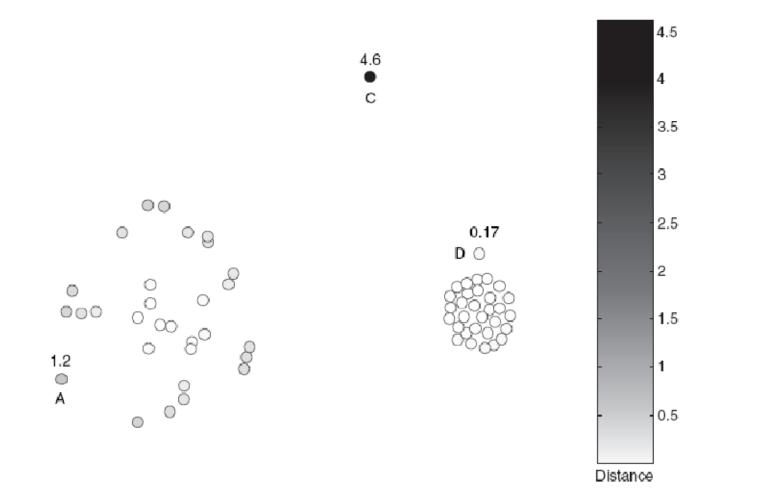
Assess degree to which object belongs to any cluster.

- For prototype-based clustering (e.g. k-means), use distance to cluster centers.
 - To deal with variable density clusters, use relative distance:

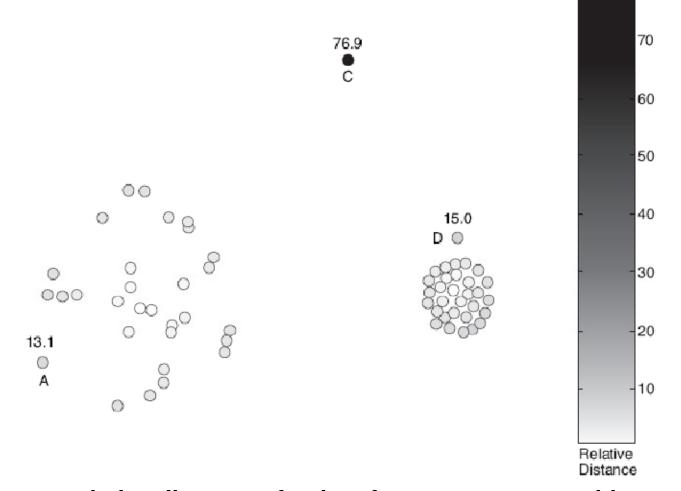
distance(\mathbf{x} , centroid_C)

median({ $\forall_{x' \in C} \text{ distance}(\mathbf{x}', centroid_C)$ })

 Similar concepts for density-based or connectivity-based clusters.



distance of points from nearest centroid



relative distance of points from nearest centroid

Eliminate object(s) to improve objective function.

- 1) Form initial set of clusters.
- 2) Remove the object which most improves objective function.
- 3) Repeat step 2) until ...

Discard small clusters far from other clusters.

• Need to define thresholds for "small" and "far".

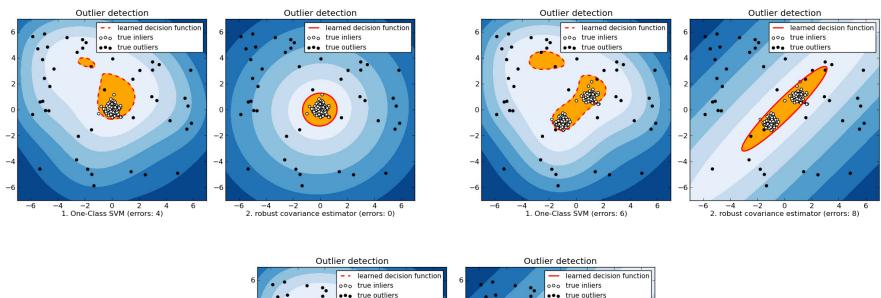
- Pro:
 - Some clustering techniques have O(n) complexity.
 - Extends concept of outlier from single objects to groups of objects.
- Cons:
 - Requires thresholds for minimum size and distance.
 - Sensitive to number of clusters chosen.
 - Hard to associate outlier score with objects.
 - Outliers may affect initial formation of clusters.

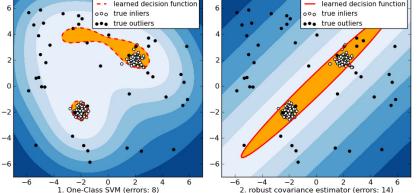
One-class support vector machines

• Data is unlabelled, unlike usual SVM setting.

- Goal: find hyperplane (in higher-dimensional kernel space) which encloses as much data as possible with minimum volume.
 - Tradeoff between amount of data enclosed and tightness of enclosure; controlled by regularization of slack variables.

One-class SVM vs. Gaussian envelope





Images from http://scikit-learn.org/stable/modules/outlier_detection.html

Jeff Howbert

Introduction to Machine Learning

One-class SVM demo

LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

-s 2 -t 2 -g 50 -n 0.35

Jeff Howbert

Anomaly detection on real network data

•Three groups of features

-Basic features of individual TCP connections

 source & destination IP Features 1 & 2 dst ... service ... flag dst ... service ... flag %S0 source & destination port Features 3 & 4 h1 http SO 70 SO 72 syn flood h1 http Protocol Feature 5 h1 **S**0 75 http Duration Feature 6 Bytes per packets Feature 7 normal http number of bytes Feature 8 existing features construct features with useless high information gain

-Time based features

- For the same source (destination) IP address, number of unique destination (source) IP addresses inside the network in last T seconds – Features 9 (13)
- Number of connections from source (destination) IP to the same destination (source) port in last T seconds – Features 11 (15)

-Connection based features

- For the same source (destination) IP address, number of unique destination (source) IP addresses inside the network in last N connections - Features 10 (14)
- Number of connections from source (destination) IP to the same destination (source) port in last N connections - Features 12 (16)

Jeff Howbert	Introduction to Machine Learning	Winter 2014	47
--------------	----------------------------------	-------------	----

Typical anomaly detection output

score	srcIP	sPort	dstIP	dPort	protoc	cflag	spackets	bytes	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
37674.69	63.150.X.253	1161	128.101.X29	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.81	0	0.59	0	0	0	0	0
26676.62	63.150.X.253	1161	160.94.X.134	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.81	0	0.59	0	0	0	0	0
24323.55	63.150.X.253	1161	128.101.X185	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.81	0	0.58	0	0	0	0	0
21169.49	63.150.X.253	1161	160.94.X.71	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.81	0	0.58	0	0	0	0	0
19525.31	63.150.X.253	1161	160.94.X.19	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.81	0	0.58	0	0	0	0	0
19235.39	63.150.X.253	1161	160.94.X.80	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.81	0	0.58	0	0	0	0	0
17679.1	63.150.X.253	1161	160.94.X.220	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.81	0	0.58	0	0	0	0	0
8183.58	63.150.X.253	1161	128.101.X108	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.58	0	0	0	0	0
7142.98	63.150.X.253	1161	128.101.X.223	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
5139.01	63.150.X.253	1161	128.101.X142	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
4048.49	142.150.Y.101	0	128.101.X127	2048	1	16	[2,4)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
4008.35	200.250.Z.20	27016	128.101.X116	4629	17	16	[2,4)	[0,1829)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3657.23	202.175.Z.237	27016	128.101.X116	4148	17	16	[2,4)	[0,1829)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3450.9	63.150.X.253	1161	128.101.X62	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
3327.98	63.150.X.253	1161	160.94.X.223	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
2796.13	63.150.X.253	1161	128.101.X241	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
2693.88	142.150.Y.101	0	128.101.X168	2048	1	16	[2,4)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
2683.05	63.150.X.253	1161	160.94.X.43	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
2444.16	142.150.Y.236	0	128.101.X.240	2048	1	16	[2,4)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
2385.42	142.150.Y.101	0	128.101.X.45	2048	1	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
2114.41	63.150.X.253	1161	160.94.X.183	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
2057.15	142.150.Y.101	0	128.101.X161	2048	1	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
1919.54	142.150.Y.101	0	128.101.X.99	2048	1	16	[2,4)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
1634.38	142.150.Y.101	0	128.101.X219	2048	1	16	[2,4)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
1596.26	63.150.X.253	1161	128.101.X160	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
1513.96	142.150.Y.107	0	128.101.X2	2048	1	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
1389.09	63.150.X.253	1161	128.101.X30	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
1315.88	63.150.X.253	1161	128.101.X.40	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.82	0	0.57	0	0	0	0	0
1279.75	142.150.Y.103	0	128.101.X202	2048	1	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
1237.97	63.150.X.253	1161	160.94.X.32	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0
1180.82	63.150.X.253	1161	128.101.X61	1434	17	16	[0,2)	[0,1829)	0	0	0	0	0	0	0	0	0.83	0	0.56	0	0	0	0	0

Anomalous connections that correspond to the "slammer" worm

• Anomalous connections that correspond to the ping scan

• Connections corresponding to Univ. Minnesota machines connecting to "half-life" game servers

Jeff Howbert	Jeff	Howbert
--------------	------	---------

Introduction to Machine Learning

Winter 2014

Real-world issues in anomaly detection

- Data often streaming, not static
 - Credit card transactions
- Anomalies can be *bursty*
 - Network intrusions

Quote of the day

An excerpt from advice given by a machine learning veteran on StackOverflow:

"... you are training and testing on the same data. A kitten dies every time this happens."