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A nonlinear numerical model for sloped-bottom tuned liquid
dampers
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SUMMARY

Shaking-table data for a tuned liquid damper with a sloped bottom of 30° with the horizontal are investi-
gated using a non-linear numerical model previously developed by Yu, Jin-kyu, Nonlinear characteristics
of tuned liquid dampers. Ph. D. Thesis, Department of Civil Engineering, University of Washington, Seat-
tle, WA, 98195 (1997). Stiffness and damping parameters for this model are obtained and compared
with those previously derived for box-shaped tanks. The values for these parameters reflect the softening
spring behaviour of the sloped-bottom system in contrast to the hardening system evident for the box-
shaped TLD. Consequently, the sloped-bottom tank should be tuned slightly higher than the fundamental
structural frequency in order to obtain the most effective damping. Copyright © 2001 John Wiley &
Sons, Ltd.
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INTRODUCTION

The sloped-bottom tuned liquid damper has been investigated recently by Gardarsson [1] and
Gardarsson et al. [2]. Its behaviour is markedly different from the more familiar box-shaped
TLD whose bottom is flat. The box-shaped tank is a stiffness-hardening system; and unfor-
tunately, it displays a beating property, when the force excitation has ceased; e.g., Reference
[3]. Typically, baffles or floating particles are used in practice to alleviate this difficulty [4-7].
The motivation for the use of the sloped-bottom tank came from a desire to reduce or if
possible prevent the phenomenon of beating. It is well-known in tsunami research that wave
energy may be dramatically dissipated by the shores of an ocean coastline. In theory, adding
a sloped bottom to a tank would provide the same dissipative property as a beach. Gardarsson
[1] performed shaking-table tests on four cases using a sloped-bottom tank with an angle of
30° with the horizontal in order to examine this theory. Although he found that the character-
istics of wave motion are different from the box-shaped tank, he was not able to conclusively
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Figure 1. (a) TLD tank configuration using the wetted perimeter L, where L; =Ly + 2ho/sin(6:);
(b) shaking table experimental set-up.

evaluate the mitigation of the beating phenomenon, nor did he examine the data thoroughly
for structural engineering applications.

The objective of this paper is to evaluate the sloped-bottom tank data in a structural engi-
neering context. First, general characteristics of the wave motion in contrast to the box-shaped
tank are discussed. Second, the parameters of the non-linear model developed by Yu [8] will
be presented and discussed. The results of this analysis provide valuable information regarding
the appropriate tuning and practical application of the sloped-bottom tanks. It is emphasized
that the single tank itself is under investigation; for mitigation of vibration over a wide range
of frequencies, multiple tanks tuned to different frequencies would have to be employed.

EXPERIMENTAL RESULTS

Figure 1 shows the experimental set-up used by Gardarsson [1] in measuring the data for the
sloped-bottom tank. The experiments were performed using the shaking-table facility located
at the University of Southern California. This table sits on a 1.2 m square platform weighing
350 kg that is anchored to a concrete floor. The table moves in a single direction horizontally
through a hydraulic servo-control system. The test TLD was mounted on a load cell bolted onto
the shaking table. The model is comprised of 1.27 c¢m thick Plexiglas plates with the exception
of the bottom one being 1.9 ¢cm to ensure rigidity. The sloped-bottom angle of 30° was the
only sloped case examined. Because there was no special treatment to the sloped Plexiglas
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Table I. Test data for tank with total base length L, =590 mm and width B =335mm.

Test case Water depth 4o (mm) Empirically derived Excitation
natural frequency fy (Hz) amplitude 4 (mm)
$590h40a025 40 1.28 25
S590h40a05 40 1.28 5
S590h70a025 70 1.06 25
S590h100a025 100 0.94 2.5

(1.906

A Ny

1093

S

Figure 2. Video capture of the tank sloshing for amplitude 4 =5mm at selected frequency ratios.
From top to bottom: Figures (a)—(d).

pieces, they were considered to be hydraulically smooth. Table I  contains information on
the tank dimensions and the water depth 4.

Capacitance gauges made from tantalum rods were used to measure the wave character-
istics. More details of this equipment can be found in Reference [1]. In order to examine
the temporal and spatial variations of the water-surface response, laser-induced fluorescent
imagery was used. Illuminated images were captured by video camera, and a fast shutter
speed of 1/250 s was used to freeze the fast moving wave actions. Examples of the wave
behaviour are given in the captured video images of one-half of the tank as shown in Fig-
ures 2(a) to (d). Figures 2(a) and 2(d) provide illustrations of small wave heights at very
low- and high-frequency ratios, respectively. The frequency ratio f§ is defined as the ratio
of the excitation frequency of the shaking table to the tank natural frequency. Figure 2(b)
shows strong wave behaviour at a frequency ratio f# between the two extremes shown in
Figures 2(a) and 2(c), close to but less than unity. In Figure 2(b), it is noted that almost
all of the water mass has travelled up the sloped portion of the tank with little temporal
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Figure 3. Time histories of the base shear force for the sloped tank at selected frequency ratios.

variation in the depressed water surface at the tank centre. Figure 2(b) is a video capture of
the ‘jump’ phenomenon. Under base excitation, all TLD tanks exhibit a response that increases
up to a particular frequency and then dramatically drops; this behaviour is called the ‘jump’
(e.g., Reference [3]). Because the sloped TLD response increases until a jump frequency ratio
that is less than unity and then suddenly ceases, it is a softening spring system. In contrast,
the box shape is a hardening spring system where the jump occurs at f>1.

From a fluid mechanics perspective, it is interesting to note that the time history of the base
shear force generated by the wave motion in the tank changes significantly with excitation
frequency. Figures 3(a) to (d) show time series of the base shear force in Newtons at pre-
jump, jump and post-jump excitation frequency ratios. These plots illustrate that the amplitude
and the frequency content of the force undergo a significant transformation from the jump to
post-jump frequencies. Also, although the magnitude of the amplitudes of the pre-jump and
post-jump forces are comparable, their frequency content is very different, clearly indicating a
different wave phenomenon in the post-jump region.

Estimation of the natural frequency of water sloshing in a sloped-bottom tank is not straight-
forward. In contrast, the linear natural frequency for the box shape can be evaluated using the
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Table II. Comparison of natural frequency estimates.

Test case Length L; (mm)  Equation (1) Empirically derived Percent difference
from Equation (2) using L, frequency [1] (Hz)

S590h40a025 250 1.20 1.28 —6.0

S590h40a05 250 1.20 1.28 —6.0

S590h70a025 370 1.06 1.06 0.0

S590h100a025 490 0.95 0.94 +1.0

dispersion relation [9] as follows:

Tth()

fw= % Egztanh (T) (1)

where f,, is the frequency in Hertz, g is the acceleration due to gravity, A is the water depth
and L is the tank length. Because of the sloped bottom, choosing a value to employ for L is not
obvious. Gardarsson [1] evaluated the frequencies of the sloped-bottom tanks experimentally.
These values were compared with an estimate from Lamb’s equation above. The best fit was
provided by the wetted perimeter L, as defined by

2hy

Li=L -
! 0+s1n(9,

)

where all parameters are shown in Figure 1. Using the length L, in equation (2) resulted in
a fairly close estimate as shown in Table II. Because this equation is undefined for values of
sin 8, =0 its use is limited.

THE NON-LINEAR STIFFNESS AND DAMPING (NSD) MODEL

Many phenomenological models have been suggested for box-shaped TLDs; e.g.,
References [5, 8, 10—16]. Although the model developed by Sun et al. [14] uses a variable
mass, the effective mass is 100 per cent for large-amplitude excitation. Yu [8] and Yu et
al. [16] use variable non-linear stiffness and damping for their equivalent tuned mass damper
(TMD) model, called the NSD model, while holding the mass constant. Yalla and Kareem
[15] impose a slamming impact model in conjunction with an equivalent TMD. All of these
models have been used to capture the base shear force generated by box-shaped tanks. Our
objective in this paper is to evaluate the parameters using Yu’s model, which employs an en-
ergy dissipation matching scheme to identify stiffness and damping parameters with a constant
water mass. Derivation of the sloped-bottom parameters of this simple model will illustrate
differences with the box-shaped tank and suggest trends for cases not yet evaluated experi-
mentally. A more comprehensive analysis of the shallow water sloshing behaviour in the tank
can be found in References [1, 2].

Figure 3 provides an illustration of the non-linear-stiffness-damping (NSD) models as a
single-degree-of-freedom (SDOF) system with stiffness and damping parameters, kg and cq,
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Figure 4. Schematic of TLD with base shear force F, modelled as an equivalent NSD with damping
force Fy, stiffness k4, and damping ¢4 parameters.

respectively. These parameters are determined such that the energy dissipation provided by the
NSD is equivalent to that of the TLD. The design challenge is to transform the appropriate
parameter set derived for the equivalent solid mass damper into the liquid damper system. The
mechanical model of TLD used for numerical simulation is based upon the development of
a control force created by the sloshing motion of the liquid in the tank. In treating the TLD
as an equivalent linear system, this force will be characterized by its amplitude and phase.
Therefore, the matching scheme must incorporate the combined effect of these two properties.
The single parameter of energy dissipation per cycle E4 is used to match this combination as
by definition it is the area inside the loop of the control force vs the tank base displacement
contour.

Figure 4 presents a typical sweep frequency plot of the non-dimensional energy dissipation
per cycle for the sloped-bottom TLD with water depth s, =70 mm and excitation amplitude
A=2.5 mm and for its corresponding NSD model. The softening spring behaviour is clearly
evident as the dissipation peaks at ff<1. The non-dimensional energy dissipation curve for
the TLD, E!, (solid line) is determined from measurements of the shaking-table experiments.
It is defined as

E; - B 3)

YT Tna(wd)?

where m,, is the mass of the liquid; @ is the excitation angular frequency of the shaking
table; 4 is the amplitude of the sinusoidal excitation; and the denominator of Equation (3) is
the maximum kinetic energy of the water mass treated as a solid mass. The numerator is the
energy dissipation per cycle as defined as

E,= | F,dx 4)

T

with dx referring to integration over the shaking-table displacement per cycles, and F, the
force generated by the liquid sloshing motion in the tank.

Copyright © 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2001; 30:731-743
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Table TII. Summary of sloshing characteristics.

A (mm) ho (mm) Bjump K Cd

25 40 0.91 0.83 0.018
25 70 0.94 0.89 0.017
2.5 100 0.95 0.88 0.012
5 40 0.87 0.78 0.024

The expression for the non-dimensional energy dissipation for the corresponding NSD model
E} (dashed lines) is determined from the analysis of its behaviour, when subjected to harmonic
base excitation. Details of this process may be found in Reference [16]. The parameters of
primary interest are defined below:

B is the excitation frequency ratio defined by f = f./fu;

fe is the excitation frequency;

fa is the natural frequency of the NSD model defined by fq=(1/2n)\/kq/mg;
¢4 is the damping ratio of the NSD model defined as ¢4 = (cq/cer);

¢er 18 the critical damping coefficient defined by c.; =2mqywq;

@y is the linear fundamental natural angular frequency defined as wq=2mnfq;

mga,kq and cq are the mass, stiffness and damping coefficients of the NSD model, respecti-
vely.

The non-dimensional energy dissipation for the NSD model at each excitation frequency is
obtained numerically and fit by the least-squares method over the frequency range of high-
energy dissipation. In this scheme,

myg=my

Beginning with initial estimates of ¢4 and fy the scheme determines values of the stiffness and
damping coeflicients for the experimental cases outlined in Table I. In analysing the results, it
is useful to evaluate the stiffness changes through two ratios. The first is the frequency shift
ratio &, defined as

]

w

(5)

in which f,, is the linear fundamental natural frequency from Equation (1). Second, the stiffness
hardening ratio x is defined as

K= (6)

KW
in which x,, = my(2n f, ). Because mgq = m,,,
K=& (7)

The matching scheme provided the following values of k and ¢4 as tabulated in
Table III. The jump frequency ratio fBjump is also provided to indicate the degree to which
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Figure 5. Comparison of non-dimensional energy dissipation.

softening behaviour occurs. The tank experiences greater softening at the larger excitation
amplitude.

Previous work by Yu illustrated the dramatic change in stiffness with the advent of strong
wave breaking for box-shaped tanks, as well as relationships for the damping and stiffness as
a function of the non-dimensionalized excitation amplitude as defined by A/L. Obviously, the
choice of ‘L’ in this equation becomes cumbersome in the sloped analysis. Therefore, the ratio
of A to the cubic root of the volume of water, ¥, in the tank was employed, 4’ =A4/V/V,.
The limited sloped-bottom data only allowed for development of a best-fit relationship in the
range 0.01<A4<0.05, whereas sufficient box-shaped data allowed equations to be developed
in the full range up to 4’ =0.30. Jump frequency ratio values appear to be represented only
slightly better using the new ratio 4’ =4/ 4 compared to the previous ratio 4/L used by Yu
[8]. In Figure 5, two types of trend lines are given for the box-shaped data and one trend
line given for the sloped-bottom data. For the slope data in Figure 6, a ‘linear’ relationship
represents the limited among of data very well having a value of R?=0.919 for the best-fit
equation. The best-fit equation is given below for the limited data set:

Biump = 0.705 x (4') 0% for 0.01 <A’ <0.05 (linear) (8)
jump

For the box data in Figure 6, a ‘bilinear’ relationship is represented by the dashed line and
a ‘linear’ relationship by the solid line. Best-fit equations are given below for the linear and
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Figure 6. Jump frequency ratio fjm, plot for tank data in Table 3.4 using the symbols: (X) for box
data from Sun et al. (1992); for box data from Yu (1997); and () for slope data. For box data:
solid line (linear), dashed line (bilinear).

bilinear curves of the box-data set:

Biump = 1.785 x (4")*'?  for 0.01<A4'<0.30 (linear) )
B = 1.677 x (4)*1%  for 0.01 <A4’<0.14 (bilinear) (10)
ump T 2,541 x (A4)*318 for 0.14<4'<0.30

Both trend lines match the jump frequency ratios very well up to 4’ =0.14, but above this
value, non-linear effects appear to be more influential and the linear curve underestimates
the jump frequency ratio values. However, the linear relationship does provide a simpler
correlation to the overall box data up to 4’ =0.30. The R? values are 0.910 and 0.998 for
the bilinear curve, before and after the break point 4’ =0.14, respectively; the linear curve
has a value of R>=0.906 over the entire range. Even though a linear curve is simpler to use
than a bilinear curve, future data points at values 4’ >0.30 may require using a bilinear curve
because a linear curve does not capture the non-linear influence and greatly underestimates
jump frequency values.

Figure 7 plots the damping ratio values for the sloped-bottom and box-shaped tanks using the
updated non-dimensional excitation amplitude ratio 4’. For the slope data, a ‘linear’ relationship

Copyright © 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2001; 30:731-743
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Figure 7. Damping ratio {4 plot for tank data using the symbols: (X) for box data from Sun ef al.
(1995); for box data from Yu (1997); and (&) for sloped TLD data.

represents the data moderately well having a value of R? =0.790. The best-fit equation is given
below:

s =0.520x (4)°™"  for 0.01<A4’<0.05 (linear) (11)

The damping ratio values for the sloped-bottom tank clearly increase with an increase in
the excitation amplitude ratio 4’. The data values are much lower than the box data and also
may slightly level off at higher excitation amplitudes, however more extensive data are needed
to verify this trend. The damping ratio trends seem equally represented using either the new
ratio A’ or the previous 4/L ratio from Yu [8].

For the box data in Figure 7, a ‘linear’ relationship is used to represent the box data,
including data from Reference [14]. The best-fit equation has a value of R*=0.868 and is
given below:

(a=0.456x(A4")’*° for 0.01 <4'<0.30 (linear) (12)

Figure 8 shows the stiffness hardening ratio values. For the sloped data, the best-fit equation
presented below has an R? =0.925:

k=0.527x(A4")7%12%  for 0.01 <A4'<0.05 (linear) (13)
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Figure 8. Stiffness ratio « plot for tank data using the symbols: (X) for box data from Sun et al. (1995);
for box data from Yu (1997); and () for sloped TLD data.

The negative sloping curve for the slope data is related to the softening spring system for
similar reasons to the jump frequency ratio trends. The stiffness hardening ratio values de-
crease with an increase in the 4’ values as the water depth decreases for a constant excitation
amplitude 4. :

For the box data in Figure 8, a ‘bilinear’ relationship is used to represent the box data,
including data from Reference [14]. The R? values are 0.364 and 0.912 for the bilinear curve,
before and after the break point 4’ =0.14, respectively. A ‘bilinear’ relationship appears most
appropriate for the box-data stiffness values even though considerable scatter is evident by
the value of R2=0.364 in the region 4’<0.14. The higher stiffness values from Reference
[14] can be partly attributed to rounding errors after converting the plotted data values from
Reference [14] into an equivalent form used in the current NSD model. The best-fit equations
are given below.

1.197 x (4)*%*  for 0.01<4’'<0.14
K= (bilinear) (14)
2.160x (4")**%  for 0.14<4'<0.30

Correlation is much better for the second part of the bilinear curve at values of 4’ >0.14.
The second part clearly shows a presence of non-linear behaviour that significantly increases
the stiffness hardening ratio values. Both trend lines relate to a hardening spring system having
increased stiffness hardening ratios with respect to the 4’ ratio (Figure 8).
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DISCUSSION

The results given here for the sloped bottom tank have implications for structural control
applications.

e From Figure 2(b), it is apparent that almost the entire water mass is involved in sloshing
near the jump frequency. The sloped bottom makes more efficient use of the system mass
during force excitation that the comparable box shape.

e Initial tuning of the sloped-bottom tank should be at a value greater than the fundamental
structural frequency in order to gain maximum effectiveness under large amplitude excita-
tion. Lamb’s equation may be used to estimate the tank frequency with a modified length
parameter representing the wetted perimeter.

e Stiffness degrading structural systems under large excitation may benefit from tanks that are
dynamically tuned, i.e. the systems would theoretically ‘soften’ together.

In this analysis, tanks with other angles of slope were not investigated. If the angle of 0°
(box) is hardening, and the 30° angle is softening, then there is some angle in between which
is neutral. The value of this angle is not currently known, and the implications of such a
property are not well understood at this time.

CONCLUSIONS

The non-linear stiffness and damping model developed by Yu [8] was used to analyse a
sloped-bottom tuned liquid damper. The results clearly illustrate a system that is described by
a softening spring. The primary benefit derived from the sloped-bottom tank is the reduction
in beating; therefore, the practical application of these tanks indicate that the tank frequency
should be at a frequency slightly higher than the fundamental natural frequency of the structure
for maximum effectiveness. Further, the appropriate use of ‘L’ in Lamb’s equation provide a
fairly close estimate of the tank natural frequency if empirical results are not readily available.
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