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Abstract

The effectiveness of multiple mass dampers has been investigated by Igusa and Xu [Dynamic characteristics of multiple tuned
mass substructures with closely spaced frequencies. Earthq. Engng Struct. Dynam. 21 (1992) 1050-70]., Yamaguchi and
Harnpornchai [Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations. Earthq.
Engng Struct. Dynam. 22 (1993) 51-62], Abe and Fujino [Dynamic characterization of multiple tuned mass dampers and some
design formulas. Earthq. Engng Struct. Dynam. 23 (1994) 813-35] and Kareem and Kline [Performance of multiple mass dampers
under random loading. J. Struct. Engng 121 (1995) 348-61]. In this paper, we extend the results of these previous investigations
to examine the performance of uniformly and linearly distributed multiple mass dampers, respectively. These systems were selected
to ascertain whether the distribution of masses located close to the central mass damper would influence the performance of the
entire system in reducing vibration. We evaluate performance numerically through assessing the effectiveness and robustness of
each system, as well as considering the effects of redundancy, under harmonic excitation. In this regard, we evaluate the performance
of the system when certain individual dampers do not function. We show that the uniformly distributed mass system is more
effective in reducing the peak dynamic magnification factor. The linearly distributed system is more robust under mistuning. It is
more robust to damping variation for low damping values but the effectiveness of the two systems converges as damping increases.
The uniformly distributed system is slightly more reliable when an individual damper fails. The eleven mass system is optimum
for both configurations for harmonic excitation. The 21-mass system is more effective in structural vibration decay in both cases
for the El Centro earthquake simulation. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Structural control; Structural dynamics

1. Introduction

Multiple mass dampers have been investigated by sev-
eral researchers such as Igusa and Xu [1], Fujino and
Abe [5], Yamaguchi and Harnpornchai [2], Abe and
Fujino [3] and Kareem and Kline [4]. Its superior per-
formance relative to the single mass damper (SMD) is
well-known. In this paper, we numerically evaluate the
performance of multiple dampers with uniformly and
linearly distributed masses, respectively, under harmonic
excitation. These systems were selected to ascertain
whether the distribution of masses located close to or

* Corresponding author. Tel.: +1-206-543-0351; fax: +1-206-685-
3836.
E-mail address: reed@u.washington.edu (D. Reed).

away from the central mass damper would influence the
effectiveness in reducing vibration. After this thorough
analysis, we briefly consider the effectiveness of the
damping systems under earthquake excitation. In the
harmonic analysis, we develop an algorithm to identify
the optimum tuning of the individual dampers, and we
assess the performance as characterized by effectiveness,
robustness and redundancy. Effectiveness is defined as
the reduction of the peak structural response under a
given loading. For harmonic excitation, this is the peak
dynamic magnification factor (DMF). Robustness is
defined as the ability of the system to behave properly
under slight mistunings or parameter variations. Redun-
dancy is defined as the ability of the system to be effec-
tive when one or more of the dampers does not function.

0141-0296/01/% - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
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2. Basic assumptions

For this analysis, we assume that the structure is a
single degree of freedom system; the structure and the
dampers are linearly elastic; the inherent damping ratio
of the structural system is 0.01; and the total mass ratio
of the MMD system is 0.01. The equation of motion
of the structure-MMD interaction contains a number of
parameters that govern the behavior of the structural
vibration reduction. One of the goals of this investigation
is to find a combination of the parameters that generates
the minimum peak response of the structure. The follow-
ing parameters are used:

n total number of mass dampers

U  ratio of the mass dampers’ total mass to the
structural mass

Jin ratio of each mass damper mass to the struc-
tural mass

& damping ratio of the structure

Ly damping ratio of each mass damper

W, natural frequency of the structure

Wy natural frequency of each mass damper

w, frequency of the forcing function

% frequency ratio of w, to w,

Yeener  tuning ratio of the central mass damper natural
frequency to the structure’s natural frequency,
(@152 O)

A frequency ratio of @, to @,

Frequency ratio distribution.

FR frequency range of the mass damper, (w,—®),),
where @, =natural frequency of the nth mass
damper and @,=natural frequency of the Ist

mass damper

The natural frequencies of the mass dampers are equally
spaced over a range, FR, as shown in Fig. 1.

The equations of motion of the structure-MMD sys-
tem shown in Fig. 2 can be expressed in a matrix form as

M:-ii+C-a+K-u=F D

where the vector u is the absolute displacement vector
of the structure and the mass dampers:

U= Ug, Uy, o, U,y 1, 2)
The mass matrix is diagonal:
M:diag[mmmhmZ»"'mn—l’mn] (3)
The stiffness matrix K is formed as

ks+znk:1kk -k —ky ... —k,_, —k,

—k, kk 0 O 0

k| 0 0 k_, O

|k, 0 0 .0 k,

m,

7 [
A A A A A A e

Fig. 2. Multiple mass dampers attached to the main structure.
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Table 1

Optimum parameters for the uniformly (UDMRS) and linearly (LDMRS) distributed mass damper systems with various n
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initial value for Yo, . FR,Gy

y_i<y_end

Yes

assign value for y,,,...(v_1)

r_i<r_end

Yes

h 2

assign value
for frquency range
FR{r_i)

D

Yes

=i+

assign value
for MD damping ratio

)]

—

v

compute peak DMF(y_i,r_i,{_{}

find min. peak DMF(y_i,r_I}

Fig. 3.

find opt. min. peak DMF(y_l)

< store opt. min. DMF(y_i) \q——

Flowchart for the numerical search.

Number Central mass damper frequency

of mass tuning ratio
dampers,
n

Frequency range

Mass damper damping ratio

Minimum peak DMF

UDMRS LDMRS UDMRS LDMRS UDMRS LDMRS UDMRS LDMRS
1 0.9886 0.9886 N/A N/A 0.065 0.065 11.3864 11.3864
3 0.9907 0.9871 0.085 0.100 0.035 0.035 10.0596 10.3912
5 0.9912 0.9895 0.115 0.145 0.025 0.030 9.7633 10.1483
7 0.9924 0.9882 0.120 0.170 0.025 0.025 9.6880 10.0824
9 0.9941 0.9875 0.130 0.200 0.020 0.020 9.6406 9.9932
11 0.9932 0.9889 0.135 0.200 0.020 0.015 9.5879 99115
21 0.9937 0.9882 0.140 0.230 0.020 0.015 9.5696 9.8424
31 0.9955 0.9884 0.150 0.240 0.015 0.010 9.5332 9.7817
41 0.9927 0.9887 0.145 0.240 0.020 0.010 9.5794 9.8074
51 0.9935 0.9882 0.155 0.250 0.015 0.010 9.5898 9.7713
61 0.9938 0.9883 0.155 0.250 0.015 0.010 9.5792 9.7775
71 0.9940 0.9883 0.155 0.250 0.015 0.010 9.5717 9.7778
81 0.9942 0.9884 0.155 0.250 0.015 0.010 9.5673 9.7835
91 0.9943 0.9884 0.155 0.250 0.015 0.010 9.5624 9.7842
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Fig. 4. Minimum peak DMF vs number of mass dampers.

The damping matrix C can be formed in a similar man-
ner. If the forcing function is harmonically oscillating
and acts only on the structure, it is given by

F=[F.¢®"00...0]" 5)
Assuming a harmonic solution with a frequency identical

to the forcing function frequency, @., allows the follow-
ing steady state solution for u,:

Then, by definition, the Dynamic Magnification Factor
can be expressed as

1
DMF=——— 7
JRe(Z)*+Im(Z)? @)

Two types of mass ratio distributions are considered:
Uniformly (UDMRS) and Linearly Distributed
(LDMRS) systems. The frequency ratio distribution is
identical for the two cases. For a given total number of
mass dampers, n, the mass ratio of each damper for the
UDMRS is

_/‘l'total
n

Hy ®)

The frequency ratio, ¥, is equally spaced over a fre-

quency range, FR. The central mass damper frequency is
determined first. The central mass damper fundamental

{—=— UDMRS
—=— LDMRS

_ Fe/(msa)g) 6
“TRe@)+Im(2)-i ©
where

X WA [ A A H{2-Ca heA ]
Re(Z)=1-A—
@ 2 R LA
- 24 La A
Im(Z)=2-{A+
m@=2% E{ﬁ—%}ﬂz-cd-mv
i
'g 0.8600
gO.WSO
g
E 0.9800
£
3

50 L0] 70 80 o0 100

number of mass dampers, n

Fig. 5. Optimum central mass damper tuning ratio vs number of mass dampers.
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Fig. 6. Optimum frequency range vs number of mass dampers.
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Fig. 7. Optimum mass damper damping ratio vs number of mass dampers.
25.00
20.00
15.00 =
T8 =07
=
o

N |
10.00
/@ 0=t
L

500 / \ N =7

// \
n=3
0.00
0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.16 1.20

frequency ratio, 4

Fig. 8. Effect of number of dampers n: ¥ene=0.9932, FR=0.135, £.=0.02.
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Fig. 9. Effect of % n=11, FR=0.135, {=0.02.

frequency is tuned to the structure’s fundamental fre-
quency according to a certain frequency ratio, Yeeper If
dy is the constant frequency interval, then the frequency
of the remaining mass dampers can be obtained as:

n+l
%:]/(nﬂ)/z_d?/‘(z_k) 9

k=12,..n
FR
(n—1y

For the Linearly Distributed Mass Ratio System
(LDMRS), the central mass damper has the highest mass
ratio which linearly decreases towards both ends. This
distribution system allows a higher concentration of
mass in the dampers whose frequencies are close to the
frequency of the structure. Let du be the constant mass
ratio increment; therefore, it follows that

where dy=

n+l1
.uk::u(n+1)/2_|d,u'(7_k>ls k=12,..n (10)
_4'Iulota1
where d,u—r+ 1) and
(n+1) <
Ui =du- Z.uk = Hotal

The frequency ratio is distributed in the same manner
as in the UDMRS. The stiffness ratio of each mass
damper, k,, is defined as:

K= Vet
where k.=k//k,.
The search for the set of the three design parameters,
{a» FR, and Y.eneers that yields the lowest peak DMF for
a given system is one of the major objectives of this
numerical investigation. An algorithm shown in Fig. 3
was developed to evaluate the optimum set of values of
the design parameters for a system of n mass dampers.
This algorithm consists of loops to search for each of
the three design parameters. It is noted that this standard
optimization may have been performed using mathemat-
ics packages; it is shown here for completeness. The root
loop is built to determine ¥..... The first sub-loop is
executed with a range of FR values. Under this sub-loop,
the second sub-loop is performed with varying {,. This
process produces a number of combinations of the
design parameters depending on the number of input
values of each design parameter. Each run of this algor-
ithm computes the peak DMF value. The minimum peak
DMF can be obtained when all the peak DMF values
are compared. In this manner, the set of the design para-
meters that yields the minimum peak DMF is obtained
for the system of » mass dampers. The results of the

ey

k+1
25.00
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20.00 ER=0.2
FR=0.
& y /%/ R=0.135
a
10.00 %
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frequency ratio, 4

Fig. 10. Effect of FR: n=11, ¥n.r=0.9932, {,=0.02.
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Fig. 11. MMd and SMD comparison (MMD: FR=0.01, n=11, Y.ener=0.9932, {d=0.02, ftymp=0.01, SMD: y=0.9932, {;=0.02, t5qp=0.01).

search will be presented in the next section. After
determining this optimum set, we then assess the sensi-
tivity to each parameter.

3. Effectiveness analysis for harmonic excitation

For a given number » of mass dampers, the three para-
meters, Yeeners PR, and {4, have a combined effect on the
response of the main structure. Therefore, the search for
optimum conditions compares all the possible combi-
nations of the parameters simultaneously for each set of
n dampers. Previous investigations did not clearly define
the manner in which the tuning ratio was determined.
Yamaguchi and Harnpornchai [2] set the central mass
damper frequency to be identical to the structural fre-
quency. Abe and Fujino [3] applied the tuning equation
developed by Den Hartog [6] to tune the central mass
damper. Abe and Fujino [3] distributed the frequencies
of the mass dampers over a certain range centered at the
natural frequency of the structure. For this study, the
numerical investigation was conducted for the initial
condition that the central mass damper frequency had a
value close to the natural frequency of the structure.
Then, the central mass damper frequency was varied

25.00

over a given range to allow for a search for the optimum
frequency tuning ratio. The optimum parameters of the
two mass ratio distributions, UDMRS and LDMRS, for
various n values are shown in Table 1.

Fig. 4 shows that the minimum peak DMF converges
as the number of mass dampers increases. There is no
significant additional reduction in the peak DMF for
MMDs with n=1. For any n, the UDMRS reduces the
peak DMF more than the LDMRS. The central mass
damper tuning ratios also converge to their optimum
values as shown in Fig. 5. It is interesting to note that
the optimum 7., for LDMRS shows some variation
when n<11 but converges to the single mass damper
(SMD) tuning ratio when n>11
(V2l1er=0.9884,¥5,p=0.9886). Because the central mass
damper has the highest concentration of mass for
LDMRS, more mass is closely tuned to the central
damper tuning ratio. Hence, the LDMRS with a large
number of mass dampers acts similar to the SMD.

Fig. 6 illustrates that the optimum frequency ranges
are greater for LDMRS. Fig. 7 shows that the optimum
mass damper damping ratio decreases as the number of
mass dampers increases. The optimum value of {, for
LDMRS is slightly less than for UDMRS.

20.00

¢ 450.065

¢ =0.005
£ =004 R/ ¢ 4=0.01

DMF

15.00 A /

Q / C ¢=0.°4-

10.00 /ﬁm

e
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Fig. 12. Effect of s n=11, ¥ene=0.9932, FR=0.135.
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3.1. Effect of the number of mass dampers

The peak responses of the MMD system with the
number of mass dampers n as a variable are shown in
Fig. 8. The values of n considered are 3, 7, 11, 21, and
51. The other variables are kept unchanged for the five
curves (Yeenmer=0.9932, FR=0.135, {,=0.02). These values
for the parameters are the optimal ones for UDMRS 11
mass damper case. It can be seen in Fig. 8 that the influ-
ence of the n value is not significant as long as n>3.
The minimum peak response is found for n=11.

3.2. Effect of the central mass damper tuning ratio

Fig. 9 shows the influence of the central mass damper
tuning ratio, Yeener, N the structural response. The values
fOr Yeener are 0.94, 0.98, 0.9932, 1.02, and 1.05. The
other variables remain constant (n=11, FR=0.135,
£4=0.02). These values for the parameters are the opti-
mum ones for UDMRS 11 mass damper case. The
change of Y.ener yields a shift of the frequencies of all
mass dampers when the FR value is fixed. AS Yeeneer
increases, each mass damper frequency increases by the
same amount of ¥...., increment.

The peak response of the curve with ¥.ne~0.94
occurs at A greater than unity. When Y., is increased
to 0.98, the peak of the response curve is reduced and
a flat region of the response curve is developed around
A=1. AS Yeenwer 18 increased to 0.9932, the peak responses
do not occur at a particular point but spread out over a
wide range of 4. The minimum peak response can be
found in the flat region. The opposite behavior is
observed as V.., increases further. Fig. 9 illustrates that
effectiveness can be optimized through minimizing the
peak DMF as a function of Y.encer

3.3. Influence of frequency range

Five different values are assigned to the frequency
range FR and the corresponding response curves are
plotted in Fig. 10. The values for FR are 0.01, 0.1, 0.135,
0.2, and 0.5. The other variables are held constant for
the five curves (n=11, ¥ene,=0.9932, {=0.02). The
values for the variables for the UDMRS 11 mass damper
case are given in Table 1. When FR is the lowest (0.01),
the curve shows two high local peaks. The two local
peaks are reduced when FR is increased to 0.1. The
minimum peak response is obtained with FR to be 0.135
and the peak responses form a wide flat region around
A=1 as seen previously.

The response curve becomes a single peak curve and
the peak value increases with higher FR. The two
extreme cases (FR=0.01 and 0.5) illustrate the relation-
ship between the MMD and the SMD. The behavior of
the MMD with FR=0.01 is almost identical to the
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Table 2
Mass and frequency ratios for the 11 mass systems

UDMRS LDMRS
No. Mass ratio Frequency ratio Mass ratio Frequency ratio
1 0.00091 0.9257 0.0003 0.8889
2 0.00091 0.9392 0.0006 0.9089
3 0.00091 0.9527 0.0008 0.9289
4 0.00091 0.9662 0.0011 0.9489
5 0.00091 0.9797 0.0014 0.9689
6 0.00091 0.9932 0.0017 0.9889
7 0.00091 1.0067 0.0014 1.0089
8 0.00091 1.0202 0.0011 1.0289
9 0.00091 1.0337 0.0008 1.0489
10 0.00091 1.0472 0.0006 1.0689
11 0.00091 1.0607 0.0003 1.0889

behavior of the SMD using the same tuning ratio of the
MMD as shown in Fig. 11.

This behavior implies that if the frequencies of mass
dampers are very closely spaced, the MMD behaves like
a SMD regardless of the number of mass dampers. This
phenomenon has been observed by others; e.g. Fujino
and Abe [5] and Igusa and Xu [1]. On the other hand,

11 MTMD with all mass dampers
15 T T r T r r T

0 . i i i : . i

08 085 08 085 1 1.056 1.1 116 1.2
frequency ratio

(a) UDMRS:solid line, LDMAS:dashed line

11 MTMD without the No.1 mass damper
15 T T r v T T T

DMF

o ; ; : : ; : ;

0.8 0.85 0.8 0.95 1 1.05 141 1.15 12
frequency ratio

(b)UDMRS:solid line, LDMRS:dashed line

when the frequencies are widely spread out (FR=0.5),
the peak response of the MMD (uy;,p=0.01) is close to
that of the SMD with a smaller mass ratio (Ugnp=0.003).
All frequency domain response plots show that the peak
response occurs at A somewhere between 0.9 and 1.1.
The DMF curves rapidly decrease outside the range. The
size of this range (0.2), however, is not a universal value

15

11 MTMD without the No.4 mass da

mper

T T

15

085 09

11 MTMD without the No.5 mass damper

0.95 1 105 14

frequency ratio
(c) UDMRS:solid line, LDMRS:dashed line

116 12

T

085 09

0.95 1 105 1.1

fraquency ratio

(d) UDMRS:solid line, LOMRS:dashed line

115 12

Fig. 16. (a) Comparison of the effectiveness of the 11 mass damper systems with all dampers. (b) Comparison of the effectiveness of the 11
mass damper system without the No. 1 mass damper. (c) Comparison of the effectiveness of the 11 mass damper systems without the No. 4 mass
damper. (d) Comparison of the effectiveness of the 11 mass damper systems without the No. 5 mass damper.
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Fig. 17. (a) The response of the single degree of freedom (SDOF) structure without dampers attached to the El Centro ground excitation. (b)
Response of the SDOF system with a single tuned mass damper. (¢} Response of the SDOF system with an 11 uniformly distributed mass system.
(d) Response of the SDOF system with an 11 linearly distributed mass system. (e) Response of the SDOF system with an 21 uniformly distributed
mass system. (f) Response of the SDOF system with an 21 linearly distributed mass system.

for all cases examined. Most of the figures show the
peak response or the top flat region in a A range less
than 0.2. It can be concluded that the mass dampers for
which the frequencies are far from the central tuned fre-
quency do not play significant roles in reducing the
peak response.

3.4. Influence of damper damping

The influence of the damper damping ratio, {4, is
examined by varying the value of {4 (0.005, 0.01, 0.02,
0.04, and 0.065) while holding the other variables con-
stant (=11, Yeener=0.9932, and FR=0.135). The values
are optimum for the 11-mass UDMRS damper case. Fig.
12 shows the responses of MMD with varying (4. A

fluctuation of peak responses is observed with small {y
(0.005). When , is 0.005, it appears that mass dampers
are not effective in dissipating energy.

The fluctuation of the peak responses of the main
structure diminishes as the mass dampers begin to dissi-
pate energy through their damping elements. However,
with excessive damping, higher than an optimum value,
the vibration amplitude of the mass dampers is reduced.
The minimum peak response is obtained with {;=0.02
as shown in Fig. 12.

4. Robustness of the MMD under harmonic
excitation

The sensitivity of a system to a certain parameter is
determined by comparing the ideal case with those
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Table 3

Parameters used in the vibration control for the single degree of freedom system under El Centro and Imperial Valley loading conditions

Figure System ¥ OF Yeenter FR a

17(b); 18(b) Single mass damper 0.9886 - 0.065

17(c); 18(c) 11-mass uniformly 0.9932 0.135 0.02
distributed

17(d); 18(d) 11-mass linearly 0.9889 0.20 0.015
distributed

17(e); 18(e) 21-mass uniformly 0.9937 0.19 0.02
distributed

17(f); 18(f) 21-mass linearly 0.9882 0.335 0.015
distributed

obtained using variations of the parameters of interest.
In this manner, the robustness of the MMD system is
examined for Yeener and 4. The case of n=21 is con-
sidered for this robustness investigation, i.e. the rest of
the parameters except the one examined are the optimum
values for the 21 MMD case.

4.1. Robustness for Veepser

The central mass damper tuning ratio of the 21 MMD
is 0.9932 for UDMRS and 0.9889 for LDMRS. The rest
of the parameters are taken from Table 1 for each case
of the UDMRS and LDMRS. In Fig. 13, the three mod-
els shown are the SMD, the UDMRS and the LDMRS.

Although the UDMRS provides the lowest peak DMF
values, it is not significantly different from the LDMRS.
The region in which the UDMRS shows higher effec-
tiveness is very small (approximately 0.02). Further-
more, the two cases of the MMDs do not show signifi-
cantly greater robustness than the SMD when the
optimum parameters are used. The peak DMF values of
the MMDs become even higher than that of the SMD
when the offset of the central mass damper tuning ratio
goes beyond certain ranges. It is noticed that this range
is greater for the LDMRS than the UDMRS. This
behavior can be explained by the mass ratio distribution:
as the central mass damper tuning ratio begins to shift,
more mass dampers have frequencies that are further
away from the optimum tuning frequency in the
UDMRS than in the LDMRS.

Therefore, the UDMRS loses its effectiveness more
rapidly than the LDMRS, i.e. the UDMRS is less robust
than the LDMRS in terms of the frequency tuning ratio
variation. One way to improve the robustness of the
MMD is to increase the frequency range. Fig. 14 shows
the improved robustness of the MMDs. The peak DMF
curve of the UDMRS forms an almost a flat region in a
wide section ([0.95<A<(1.04]). By increasing the fre-
quency range from 0.135 to 0.190, the system becomes
less sensitive to the shift of the frequency tuning ratio.
However, the minimum peak DMF value is increased
since the optimum value for the frequency range is not

used. The new frequency range (FRypygs=0.190) allows
the UDMRS to obtain high robustness and keep the
minimum peak DMF of the UDMRS less than that of
the SMD. For the same reason, the new frequency range
(FR; pmrs=0.335) is applied to the LDMRS.

4.2. Robustness for {,

Fig. 15 shows the comparison of the peak DMF curves
of the SMD, UDMRS, and LDMRS. It illustrates that
the SMD is less sensitive to the variation of the mass
damper damping ratio in a broad region centered at its
optimum damping ratio ({sup=0.065). Though the two
MMDs seem less robust under the variation of g, the
range in which the peak DMF values of the MMDs are
lower than the minimum peak DMF of the SMD is quite
broad. The two MMDs also show the flat region in their
curves around their optimum values ({ypmrs=0.02,
{1omrs=0.015). In particular, the LDMRS shows very
robust behavior when the damping is low.

5. Redundancy analysis under harmonic excitation

The major advantage of the MMD over the SMD is
its ability to function when one or more dampers fail.
For example, when the damper whose frequency ratio is
the minimum among the dampers is inactive, the
maximum DMF using the 3 mass UDMRS is increased
by 63% while that of the 11 mass damper UDRMS is
only increased by 16%. In this section, the 11 mass sys-
tem is considered. The dampers are numbered such that
the smallest frequency is assigned to No.1 and the great-
est is assigned to No. 11. The details appear in Table 2.

Fig. 16(a—d) show the DMF curves of the two cases
(UDMRS and LDMRS) of the 11-mass systems. Fig.
16(a) shows the DMF curves of the two cases with their
optimum parameters. In Fig. 16(b), the systems are
evaluated with the loss of damper No. 1, and this process
is continued for all of the dampers. Fig. 16(c,d) show
the effect of ‘losing’ other dampers for comparison. In
summary, the UDMRS shows less fluctuation of the



J. Park, D. Reed / Engineering Structures 23 (2001) 802-814 813

SDOF system under imperial earthquake

displacement ratio
(=]

displacement ratio

[¢] 5 10 15 20 25 30 35
time (sec)

(@)

STMD system under imperial earthquake

displacement ratio

displacement ratio

[+] 5 10 15 20 25 30 35
time (sec)

(b)

11-mass UDMRS under Imperial earthquake

displtacement ratio

displacement ratio

0 5 10 15 20 25 30 35
time (sec)

()

11-mass LDMRS under imperial earthquake

1 b
051
0
-0.5}
-1t . . N L . ]
0 5 10 15 20 25 30 35
time (sec)
(d)
21-mass UDMRS under Imperial earthquake {(FR=0.19)
1 .
0.5
o]
-0.5
-1
0 5 10 15 20 25 30 35
time (sec)
(e)

21-mass LDMRS under imperial earthquake (FR=0.335)

0 5 10 15 20 25 30 35
time (sec)

U]

Fig. 18. The response of the single degree of freedom (SDOF) structure without dampers attached to the Imperial Valley ground excitation. (b)
Response of the SDOF system with a single tuned mass damper. (c) Response of the SDOF system with an 11 uniformly distributed mass system.
(d) Response of the SDOF system with an 11 linearly distributed mass system. (¢) Response of the SDOF system with an 21 uniformly distributed
mass system. (f) Response of the SDOF system with an 21 linearly distributed mass system.

peak DMF than the LDMRS for loss of individual dam-
pers, but the amount is not very large. This analysis is
not exhaustive, but it provides some indication of the
reliability of each system when individual dampers fail.

6. Consideration of earthquake loadings

We also studied the effect of the two systems for
earthquake loading conditions. Consistent with the state-
ments made by Kaynia and Veneziano [7], Sladek and
Klingner [8] and Abe [9] for the passive TMD systems,
for this loading type, the major influence of these dam-
pers is to increase the rate at which the vibration is
reduced and active systems are preferred for reduction
of peak values. The El Centro and Imperial Valley earth-
quake records were used in this analysis. They were

chosen as representative of two types of records: El Cen-
tro generates relatively continuous excitation while the
Imperial Valley is more of an impulse type excitation.
Even though Imperial Valley strong motion lasts for
twice as long as the El Centro, the significant excitation
is observed only for the first 16 s.

The constraints applied to the model in the earthquake
excitation analysis are the same as those used for the
sinusoidal excitation study: the total mass ratio is 0.01
and the structural damping ratio is 0.01. The structure is
modeled as a single degree of freedom system with mass
dampers attached. The total mass of the structure was
chosen to be 100 kg with a period of 1 s. The mass can
be an arbitrary number since the analysis is undertaken
using the ratio of the parameter values. The relative dis-
placements of the structure were divided by the
maximum displacement of the single degree of freedom
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structure without any mass dampers. In this manner,
comparison was made based on the displacement ratio
of various cases, not absolute displacement.

For El Centro, Fig. 17(a~d) show the vibration of a
single degree of freedom system without artificial damp-
ing; the vibration when a single mass damper is
employed; the vibration when an 11-mass uniformly dis-
tributed system is employed, and the 11-mass linearly
distributed system, respectively. The effectiveness of the
11-mass systems was comparable to the single mass
damper. The parameters for the uniformly and linearly
distributed systems were derived from the optimization
under harmonic forcing. Tweaking the number of dam-
pers, the frequency ranges and individual damping
values, yielded slightly better effectiveness from both
systems as can be seen in Fig. 17(e,f) for the 21-mass
uniformly and linearly distributed systems, respectively.
The relevant parameters for the systems are provided in
Table 3.

For Imperial Valley, Fig. 18(a—d) show the vibration
of a single degree of freedom system without artificial
damping; the vibration when a single mass damper is
employed; the vibration when an 11-mass uniformly dis-
tributed system is employed, and the 11-mass linearly
distributed system, respectively. The influence of the
dampers on the decay rate is much more pronounced
with the Imperial loading. If the number of dampers is
increased to 21, as with the El Centro analysis, the
resulting vibration decay is only slightly better than the
11 mass systems, as shown in Fig. 18(e,f) for the uni-
formly and linearly distributed systems, respectively.
Table 3 contains the details of the parameters employed
in the study.

This limited earthquake analysis shows the effective-
ness of the multiple mass systems for earthquake load-
ings in terms of increasing the decay rate of vibration.
The 21-mass system is only slightly more effective than
the 11-mass system. Significant differences in the effec-
tiveness between the two damper systems are not appar-
ent under the earthquake loading conditions.

7. Conclusions

For harmonic excitation, we show that the uniformly
distributed mass system is more effective in reducing the
peak dynamic magnification factor. The linearly distrib-
uted system is slightly more robust to mistuning. It is
also more robust to damping variation for low damping,
but the effectiveness of the two systems converges as
damping increases. The uniformly distributed system is
more reliable when an individual damper fails. The
eleven mass system is optimum for both configurations
under harmonic excitation. A limited study was under-
taken for vibration control under the El Centro and
Imperial Valley earthquake excitation records. For both
cases, the performance of the 11-mass systems was com-
parable to a single mass damper; and, the 21-mass sys-
tems appeared to be slightly more effective in vibration
decay over the entire loading period. Neither system fav-
ored the other under this loading condition.
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