INVESTIGATION OF TUNED LIQUID DAMPERS UNDER LARGE
AMPLITUDE EXCITATION
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ABSTRACT: The behavior of tuned liquid dampers (TLD) was investigated through laboratory experiments and
numerical modeling. Large amplitude excitation is the primary focus, as previous research was limited to small
amplitude motion. Time histories of the base shear force and water-surface variations were measured by precisely
controlled shaking table tests. The results are compared with a numerical model. The random-choice numerical
method was used to solve the fully nonlinear shallow-water wave equations. The results suggest that the model
captures the underlying physical phenomenon adequately, including wave breaking, for most of the frequency
range of interest and over a wide range of amplitude excitation. It was found that the response frequency of
tuned liquid dampers increases as excitation amplitude increases, and the TLD behaves as a hardening spring
system. To achieve the most robust system, the design frequency for the damper, if it is computed by the
linearized water-wave theory, should be set at the value lower than that of the structure response frequency;
hence, the actual nonlinear frequency of the damper matches the structural response. It was found that, even if
the damper frequency had been mistuned slightly, the TLD always performed favorably; we observed no adverse

effect in the wide range of experimental parameters tested in this study.

INTRODUCTION

In recent years, the construction of lightly damped, flexible
tall buildings in regions of seismic and extreme-wind risk has
created concern in the structural engineering community. In
recognition of the serviceability issues, engineers have created
artificial damping devices. Of these devices, tuned liquid
dampers (TLDs) have proven a successful passive vibration
mitigation system (Kareem and Sun 1987; Tamura et al. 1988;
Fujii et al. 1990; Wakahara et al. 1992; Fediw et al. 1993;
Wakahara 1993). However, these systems have not been thor-
oughly investigated and are often designed using simplistic
methods. This limitation greatly restricts the designer’s ability
to effectively employ the TLD as a damping device.

The major objective of the present study is to analyze the
behavior of TLDs through both experimental investigation and
numerical modeling. In particular, the performance of these
damping devices under large amplitude excitation is important,
because previous studies were limited to small amplitude ex-
citation. Although gaining an understanding of the behavior of
the liquid in the tank itself was considered paramount, the role
of the liquid in dissipating energy is explicitly investigated. In
this paper, the results of an experimental investigation of TLDs
under shaking table excitation for an expanded range of fre-
quencies and amplitudes, coupled with a new numerical mod-
eling of the liquid behavior in the tank, are presented.

The classical modeling of the single degree of freedom
(SDOF) structural system damped by a TLD is given as fol-
lows with reference to Fig. 1:

() + 2L0,%,() + ix,(0)=F, + F, ®

where x, = displacement of the structural system; {, = coeffi-
cient of damping of the structure; w, = structural natural
frequency in radians/second; F, = excitation force; and Fj =
force, usually referred to as the base shear, provided by the
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TLD along the same axis as the excitation. The base shear
force is ideally modeled as the hydrodynamic force F, induced
by the liquid sloshing as given in the following equation with
reference to Fig. 2:

1
Fpr > pgblh? — k) 2

where p = density, g = gravity, b = tank width, k, = wave
height at the endwall on the left side and h, = wave height at
the endwall on the opposite or right side. Eq. (2) is based on
the assumption that the hydrostatic pressure force is dominant
by neglecting both the inertial force due to the vertical accel-
eration of the liquid at the endwalls and the frictional force
along the tank bottom. In this study, the base shear force of
the TLD is numerically simulated as the hydrostatic pressure
force by (2), in which the characterization of the wave height
is based upon the shallow-water wave theory.

The shallow-water wave theory is based on the depth-av-
eraged equations of mass and momentum conservation. The
derivation of these equations involves the assumptions that
water is an incompressible and inviscid fluid; that the water
depth is infinitesimally small in comparison with the charac-
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FIG. 1. Schematic of Tuned Liquid Damper Attached to Single-
Degree-of-Freedom Structural System
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FIG. 2. Schematic of Rectangular Tank of Length L

teristic horizontal length scale of the motion; that the pressure
field is hydrostatic everywhere; and that the horizontal velocity
is uniform throughout the depth. If one-dimensional wave
propagation is considered, the equations of mass and momen-
tum conservation are, respectively,
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where u = depth-averaged horizontal velocity; m and & = kg
+ m are the water-surface elevations from a reference datum
and from the bottom boundary, respectively; g = gravitational
acceleration; and x and ¢ denote the horizontal spatial coordi-
nate and time, respectively. Eq. (3) can be interpreted as a
necessary balance of the net volumetric flux with the time rate
of change in water depth, while (4) expresses that the material
acceleration (i.e., the sum of the local and advective acceler-
ations) is caused by the hydrostatic pressure force. Though the
energy dissipation associated with turbulence can be impor-
tant, the direct viscous effect on the fluid momentum is neg-
ligible for the high Reynolds number flows typical of those in
a tuned liquid damper. For the TLD, the water depth is usually
much smaller than the horizontal dimension of the tank, which
implies that the assumptions of the infinitesimal flow depth
and hydrostatic pressure field are justified.

A shallow-water wave described by (3) and (4) propagates
with a speed independent of its wave length, but dependent
on its amplitude; the higher the wave amplitude, the faster it
propagates. This is a characteristic of the shallow-water wave
theory, which represents a non-dispersive and fully nonlinear
wave system. The models based on the non-dispersive, fully-

sipation, although the breaking is not characterized in detail,
but as a discontinuity in flow property (Lamb 1932). In fact,
it is this property for which the shallow-water wave theory
was adopted for analysis of the sloshing motion in a tuned
liquid damper, because the focus is on the response under large
amplitude excitation, which evidently involves wave breaking.

One commonly used numerical scheme to solve (3) and (4)
is the Lax-Wendroff method (Lax and Wendroff 1964). How-
ever, the Lax-Wendroff scheme usually requires some numer-
ical smoothing to damp out numerical instabilities inherent in
the rapid changes of the breaking wave front. On the other
hand, the random choice method, originally developed by
Glimm (1965) and used in this study, causes no numerical
dissipation or dispersion. Furthermore, the random choice
method is a shock-preserving scheme, meaning that the break-
ing wave front is always identified as a discontinuity of the
water surface and velocity. Hence, the model follows precisely
the mathematical formulation of the shallow-water wave the-
ory (3) and (4). However, it is noted that this does not mean
that the model can simulate the real-fluid sloshing motion pre-
cisely. Specifically, in the real-fluid environment, the breaking
wave front is not a discontinuity but a rapid transition that
involves turbulence, and the pressure field is not exactly hy-
drostatic, especially near the breaking wave front. Detailed de-
scriptions of the random choice method are given in Holt
(1984), Chorin and Marsden (1990), and Gardarsson and Yeh
(1992). This numerical model of the sloshing motion is used
in estimating the base shear force described in (2).

EXPERIMENTAL STUDIES

Tanks of configurations described in Table 1 were tested
under small and large amplitude sinusoidal excitation. Tank
sizes were selected on the basis of previous investigations for
tanks under small amplitude vibration [i.e., the ratio of max-
imum amplitude excitation to tank length A/L < 0.0169 by
Sun et al. (1991) and A/L < 0.033 by Koh et al. (1994)]. The
experimental setup with the shaking table facility is shown in
Fig. 3. The data measured include the shaking table displace-
ment; the sloshing forces in the horizontal or along (x) and
across (y) directions, F,, and F,,, respectively; the temporal
water surface variations m at the end wall and at the middle
of the tank; and a videotape of the water wave motion for a
half-length of the tank. In presenting the results, the following
parameters are used:

1. The fundamental natural frequency of the water sloshing
motion predicted by the linear water wave theory

nonlinear shallow-water wave equations are believed capable £ = 1 78 nn (The G
of modeling wave-breaking, including the effect of energy dis- Y 2w VL L
TABLE 1. Data for Rectangular Tanks
Tank Size Natural Excitation Amplitude
Length Width Water depth Water depth frequency
Case L b hy ratio fo A
identification (mm) (mm) (mm) € (Hz) (mm) AL
(M (2 3) @) 6 (6) 4] (8)
L335h9.6 335 203 9.6 0.029 0.457 10 0.030
L335h15 335 203 15 0.045 0.571 2.5,5,10,20,30 0.007-0.119
L590h15 590 335 15 0.025 0.325 2.5,5,10,20,30,40 0.004-0.068
L590h22.5 590 335 225 0.038 0.397 2.5,5,10,20,30,40 0.004-0.068
L590h30 590 335 30 0.051 0.458 2.5,5,10,20,30,40 0.004-0.068
L590h45 590 335 45 0.076 0.558 20 0.034
L900h30 900 335 30 0.033 0.301 2.5,5,10,20,30,40 0.003-0.044
L900h40 900 335 40 0.044 0.347 2.5,5,10,20,30,40 0.003-0.044
L900hS5 900 335 55 0.061 - 0.406 10,20 0.011-0.022
L900h71 900 335 71 0.079 0.459 255,10 0.003-0.011
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FIG. 3. Shaking Table Experimental Set-Up

where L = length of the tanks; and h, = water depth as
illustrated in Fig. 2.
2. Excitation frequency ratio 8
Je
B=7 ()]
Jo
where f, = frequency of the sinusoidal excitation.
3. Nondimensional water surface elevation 1’

m
I=_ 7
n A )

where 1 = departure of the water surface from the un-
disturbed water surface depth, hy.
4. Nondimensional base shear force F,,

F,
F, = =
m,w’A

®)

where F,, = reaction force of the tank created by sloshing
motions induced by the shaking table movement; m,, =
mass of the water in the tank; w = excitation angular
frequency of the shaking table; A = shaking table exci-
tation amplitude; and the product m,w’A = maximum
inertia force of the water mass treated as a solid mass.
In this analysis, the measured base shear force was ob-
tained by subtracting the inertia force of the mass of the
tank from the total force measured by the load cell to
identify the force due to sloshing motion only.

5. Nondimensional phase angle ¢’'. The phase angle ¢ in
radians between the shaking table motion and the base
shear force has been expressed in units of 7, as follows:

o =2 ©)

w

6. Nondimensional energy dissipation per cycle Ej

E;= I—E‘l— (10)
2 m,(wA)
where the numerator is the energy dissipation per cycle
is defined by
Ed=j wadx (ll)
TI

where dx refers to integration over the shaking table dis-
placement per cycle; and the denominator of (10) = the
maximum Kinetic energy of the water mass treated as a
solid mass.

In addition to the wave-gauge and load-cell measurements,
the spatial water-surface profiles were captured by video with
the aid of a laser-light sheet. A typical image of the water-
surface with wave breaking is shown in Fig. 4.

FIG. 4. Digitized Wave Profile Image from Shaking Table Test
for Rectangular Tank of Length L = 590 mm

Time History Analysis

Examples of the typical data recorded under sinusoidal ex-
citation for the rectangular tank of length L = 590 mm, water
depth hy = 30 mm, and amplitude A = 20 mm at the base
excitation frequency ratios B of 0.7, 1.0, 1.2 and 1.4, respec-
tively, are given in Figs. 5(a—d). Figs. 5(a) and (b) contain
plots of the temporal variations of the nondimensional water
surface profiles near the end wall m; and at the middle of the
tank m;, respectively. In Fig. 5(c), F,, is the base shear force
measured in the longitudinal or x-direction; the data have been
filtered by a 5 Hz low-pass filter to eliminate system noise. In
Fig. 5(d), F,, is the base shear force measured in the transverse
or y-direction. At the excitation frequency ratio of 0.7, small
and smooth waves develop, as shown in Fig. 5(a). The water
surface remains constant at the node of the standing wave at
the middle of the tank, as shown in Fig. 5(b) with 8 = 0.7.
This smooth back-and-forth wave formation with the node at
the middle of the tank and the anti-nodes at the end walls is
typical of the lowest mode of the standing wave that can be
predicted with the linearized water-wave theory. At higher fre-
quency ratios of unity and 1.2, strong waves develop and the
saw-tooth wave formation, as shown in Figs. 5(a) and (b) with
B = 1, represents wave breaking. The wave height at the end
wall [Fig. 5(a)] is twice the height at the middle of the tank
[Fig. 5(b)], which is consistent with the prediction by (3) and
(4). The previously shown digitized image of Fig. 4 corre-
sponds to the wave gauge data of the tank shown in Fig. 5(a)
for excitation frequency ratio B = 1.18. Note that the wave
motion dramatically decreases at B = 1.4.

Fig. 6 presents the time history responses for the water sur-
face elevations at the end wall for the case of the tank with
length L = 590 mm and water depth A, = 30 mm at various
excitation frequencies for the excitation amplitudes A = 10,
20, and 40 mm, respectively. The excitation frequencies for
which the time histories are shown in Fig. 6 were selected on
the basis of the tank behavior under each excitation. Wave
breaking over a wide range of frequencies is apparent by the
strongly skewed wave profiles. It is noted that the largest wave
motion in each case occurs at a frequency ratio higher than
unity. In each case, this frequency ratio is different; the sig-
nificance of this behavior is more fully explored in the fre-
quency analysis section. Another observation is the character-
istics of peaked crests and flattened troughs in the wave profile
at the higher frequency ratios. This behavior clearly indicates
a fairly complex wave pattern associated with strongly nonlin-
ear characteristics.

Fig. 7 shows the corresponding base shear force due to
sloshing motion. The base shear mirrors the wave motion re-
sults of Fig. 6. The largest forces are developed at frequency
ratios higher than unity. Because the duration of these peaks
is shorter, the influence of the force in mitigating structural
motion is not clear; hence, an energy dissipation analysis is
necessary. For the same cases, Fig. 8 contains plots of the base
shear force versus the shaking table displacement for the three
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FIG. 5. Sample Time Histories of Water Sloshing Motion for Case of Tank with Length L = 590 mm, Water Depth h, = 30 mm and Am-
plitude of Excitation A = 20 mm
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FIG. 6. Sample Time Histories of Nondimensional Endwall Wave Profiles for Tanks with Length L = 590 mm, and Water Depth h, =30
mm: (a) Amplitude A = 10 mm; (b) A = 20 mm; (c) A =40 mm
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FIG. 7. Sample Time Histories of Measured Base Shear Force in x-Direction for Same Conditions as Fig. 6: (a) A= 10 mm; (b) A=20

mm; (c) A=40 mm
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FIG. 8. Energy Dissipation Curves of Sloshing Force F,,.[N] versus Shaking Table Displacement x[mm] for Same Conditions as Fig.

7: (a) A= 10 mm; (b) A =20 mm; (c) A=40 mm

amplitudes of excitation A = 10, 20, and 40 mm, respectively,
and at excitation frequency ratios, B, below, at, and above
unity. The dashed lines indicate the base shear forces, includ-
ing only the fundamental mode of water sloshing. The solid
lines indicate the base shear forces, including higher modes.
The effects of the higher modes of water sloshing motions on

the time history base shear forces can be determined by com-
paring these two curves. The higher modes change the time
history of the magnitude of the base shear forces. However,
the areas inside the loops do not change significantly. For ex-
ample, for the tank whose results are shown in Fig. 8(b), of
length L = 590 mm, A, = 30 mm, and A = 20 mm, the differ-
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FIG. 9. Sample Frequency Response Curves for Shaking Table Tests of Tank with Length L = 590 mm, h, =30 mm, and Excitation Am-
plitudes of A = 10, 20, and 40 mm: (a) Maximum Wave Height near End Wall; (b) Maximum Base Shear Force; (c) Phase Angle between

F,, and x; (d) Energy Dissipation per Cycle

ence in the areas computed for the energy dissipation using
the two representations is about 2%.

The performance of TLDs can be assessed through calcu-
lating the area enclosed by the contours shown in Fig. 8, as
this represents the energy dissipation during a cycle of motion.
To ensure large dissipation at steady state, the ideal phase an-
gle should be w/2, which yields a contour symmetrical about
the F,, axis, just as those at B = 1.1 in Fig. 8(a), at p = 1.18
in Fig. 8(b), and at 8 = 1.3 in Fig. 8(c). This condition is
represented by a contour in which the area is at a maximum.
When the contour in Fig. 8 becomes “flattened’’ in the dia-
gram [see the contours at B = 0.9 in Fig. 8(a) and at p = 0.8
in Fig. 8(c)], it represents the situation when damper loses its
effectiveness. Furthermore, when the contour trajectory be-
comes clockwise, the damper behaves adversely, i.e., negative
damping will occur. It must be emphasized that the adverse
dissipation never occurred throughout our experiments, which
covered wide excitation frequency and tank ranges. The results
shown in Fig. 8 suggest that the damper performance can be
predicted approximately by analyzing the fundamental mode
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of water sloshing alone without examining the higher-mode
effects even for the cases with strong excitation.

Frequency Analysis

In addition to the time history analyses, the same parameters
of wave height and base shear were plotted versus the exci-
tation frequency ratio. For the tank of length L = 590 mm with
water depth of h, = 30 mm, the effect of the base excitation
amplitude on the wave motion was examined for the excitation
amplitudes A = 10, 20, and 40 mm. The results are shown in
Fig. 9 for maximum wave height, maximum base shear force,
phase angle between the fundamental mode of the base shear
force F,, and the shaking table displacement x, and the energy
dissipation per cycle. All quantities are in nondimensional,
form as defined in (6)—-(10). It can be seen that the wave
height increases as the excitation frequency approaches the
natural frequency of the TLD; however, the peak occurs at an
excitation frequency much higher than the tank natural fre-
quency, which clearly demonstrates the nonlinear behavior of



the fluid in the tank. After a gradual, fairly smooth build-up
to a peak value, there is a dramatic drop in value. This phe-
nomenon has been remarked upon by previous researchers
(e.g., Lepelletier and Raichlen 1988; Sun et al. 1991); it is
called the “‘jump’’ phenomenon, and the frequency at which
it occurs is called the “jump frequency,”’ fium. The existence
of the jump frequency at frequency ratios § > 1.0 indicates
that the water sloshing motion displays a ‘‘hardening” or
“stiffening’’ spring-type nonlinearity. These results are quali-
tatively consistent with the data provided by Fujino et al.
(1992) for similar experiments but with much smaller excita-
tion. The maximum excitation amplitude to tank length ratio
in their investigation was A/L = 0.0169, whereas the present
experiments included the case with A/L = 0.0678.

The curves in the plot of the phase angle shown in Fig. 9(c)
exhibit gentle slopes. Also note that the nondimensionalized
phase angle ¢’ never exceeds unity (or the actual phase angle
¢ is always between O and ). This means that, for the fre-
quency range we tested, the TLD never behaved adversely (no
negative damping occurred). The corresponding energy dissi-
pation plot for the three excitation amplitudes shows that as
amplitude increases, energy dissipation over a broader range
of frequencies occurs. The dissipation over a broad range in
this manner illustrates that the tank is a robust energy-dissi-
pating system.

From Fig. 9(a), it can be seen that as the excitation ampli-
tude increases, the value of the jump frequency ratio and the
response increases. This increase indicates that the nonlinearity
of the water sloshing motion becomes stronger as the excita-
tion amplitude increases. This hardening spring behavior can
be explained physically by the fact that the wave propagation
speed in shallow water depends on the wave amplitude. Based
on the shallow-water wave theory, the propagation speed, S,
for a nonbreaking wave is \/g(h, + m). For the quasi-steady
response of the sloshing motion to the forcing equation, the
excitation frequency, f, and the wave propagation speed, S,
must be related by

S
T 2L

where L = tank length, Eq. (12) indicates that as the excitation
frequency increases, the wave must propagate faster. Conse-
quently, the wave amplitude must increase, and ultimately,
gréater response results. A similar observation can be made in
the case of broken waves such as that shown in Fig. 4. Con-
sidering the wave breaking to be a bore propagating on a qui-
escent water of depth h;, the propagation speed, S, of the
breaking wave can be evaluated as

(12)

5= §:—’,'(h, + h) (13)
based on the shallow-water wave theory (3) and (4). In (13),
h, is the total water depth immediately behind the wave front.
Approximating the average propagation speed associated with
the tank sloshing by the wave front speed at the middle of the
tank, the relationship between the wave height (Ak = hy — b))
and the forcing frequency estimated by (12) was plotted in
Fig. 10. This figure shows that a TLD adjusts to an increased
wave height when the excitation frequency increases and in
so doing enhances the damping performance.

The relationship between the jump frequency and nondi-
mensional excitation amplitude is shown in Fig. 11. This plot
includes previous results of Sun et al. (1992) for small ampli-
tude motion. Although the damper is assumed to no longer be
effective at excitation frequencies greater than the jump fre-
quency, the results in Fig. 11 clearly indicate that, when the
excitation amplitude increases, the frequency range of damper
effectiveness widens. Fig. 11 further illustrates that when the

0 0.1 0.2 03 04 05 0.6 0.7 08 0.9 1
Ah/hy

FiG. 10. Relationship between Water Frequency Ratio of fto
f., where fls Defined by Eq. (12) and f,, Is Defined by Eq. (5), and
Nondimensional Water Wave Height Ah/h,, where Ahls Defined
in Eq. (13)
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FIG. 11. Relationship between Jump Frequency Ratio and
Nondimensional Excitation Amplitude Based on Experimental
Results of Sun et al. (1991) and Present Investigation

excitation amplitude goes beyond the value of approximately
A/L > 0.025, the slope of the curve increases. This change
implies that the rate at which the range of frequencies for
which the damper is effective increases. Therefore, the tuned
liquid damper performs in a wider frequency range under
strong excitation. This behavior also suggests that the nonlin-
ear behavior is responsible for the improved performance and
robustness of the rectangular TLD.

NUMERICAL ANALYSIS

A series of numerical simulations of the tank sloshing were
undertaken using the random choice method to solve the shal-
low-water wave equations, (3) and (4). The results presented
here correspond to the simulation for the L = 590 mm tank
whose experimental behavior was shown in Figs. 5 and 6. The
length of the tank was meshed with 400 grid points. The hy-
drodynamic force was computed by the hydrostatic pressure
forces described in (2).

Fig. 12(a) shows the time history of water-surface profile
for the conditions of a tank with length L = 590 mm, water
depth h, = 30 mm, and an excitation amplitude of A = 20 mm.
The profile in Fig. 12 is at 1.7 cm from the end wall, where
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FIG. 12. Comparison of Numerical Simulation Using Random Choice Method (-0-) and Measured Data (-) for Rectangular Tank of
Length L = 590 mm, h, = 30 mm, and Excitation Amplitude A = 20 mm, for Various Excitation Frequency Ratios: (a) Wave Height at End
Wall; (b) Base Shear Force; (c) Energy Dissipation
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FIG. 13. Frequency Response Comparisons Using Shaking Table Data and Random Choice Method for Rectangular Tank of Length
L = 580 mm, h, = 30 mm, and Excitation Amplitude A = 20 mm: (a) Maximum Wave Height near End Wall; (b) Maximum Base Shear
Force; (c) Energy Dissipation per Cycle
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one of the wave gauges was placed in the shaking table tests.
The numerical predictions are compared with the experimental
data. It is emphasized that there is absolutely no “‘tweaking”’
parameter involved in the numerical model. The random-
choice-method simulation accurately predicts the period and
amplitude of the waves, even for the cases where large wave
breaking occurs. The greatest discrepancy between the data
and the simulation is in capturing the short trailing waves be-
hind the leading wave. Because the random choice method
solves the fully nonlinear but non-dispersive shallow-water
wave equations, (3) and (4), it is not capable of modeling these
dispersive waves. The wave heights generated by the numer-
ical model behind the leading wave are about the average
height of the trailing waves. The model predicts a sharper rise
in the wave heights when the leading wave hits the end wall
than that observed in the shaking table tests. This is due to the
fact that the real bore front has a finite width but the simulated
bore front extends only between two grid points, i.e., the dis-
continuity.

The sloshing forces were numerically simulated using the
hydrostatic pressure assumption by (2). The calculated forces
are compared to the load-cell data in Fig. 12(b). The model
predicts quite accurately the force when wave breaking is not
the dominant feature of the flow (e.g., for B = 0.9 and 1.0).
The predictions for the larger amplitudes are not as accurate
behind the leading wave where the trailing waves influence
the force. This discrepancy is expected in light of the previous
discussion about the limitation of the shallow-water wave the-
ory. The numerical model appears to consistently overpredict
the forces. This overprediction may result from excluding the
effect of inertial forces created by the vertical acceleration
along the end wall.

The computed base shear force was plotted against the shak-
ing table displacement in Fig. 12(c), with the measured data
of Fig. 8(b) also shown for comparison. The representation by
the random choice method is good for the lower frequency
ratios. Although the agreement overall is fairly good, the
model is not accurate near the jump region (8 = 1.35).

Fig. 13 contains the frequency analysis comparing the sim-
ulations and the measured data. The simulated results are in
good agreement with the experimental results; however, the
jump phenomenon is not captured, as seen in Fig. 13(a) and
(b). The numerical scheme predicts a much gentler, smoother
transition over the frequency range for the wave profile and
maximum base shear force. On the other hand, the energy
dissipation curve compares very well for the entire frequency
range, with slight discrepancies near the excitation ratio of
unity and in the jump region. This result suggests that the
random choice method has potential for capturing the energy
dissipation when evaluated in this manner rather than strictly
through the base shear force-displacement plots of Fig. 12(c).
While the model does not simulate exactly the wave motion
over the entire frequency range, it does provide an excellent
approximation of the TLD performance through the energy
dissipation over the entire range. This particular result is en-
couraging, given that the design process may ultimately be
formulated upon the maximum performance as defined by the
estimated energy dissipation.

CONCLUSIONS

Experimental investigation and numerical modeling of lig-
uid behavior in TLDs have provided insight into the behavior
of these devices in controlling structural vibration under small
and large amplitude excitation. Not only were previous limited
measurements expanded to large amplitude excitation more
representative of earthquake motion, the analysis of these large

amplitude results was considerably enhanced by evaluating the
results through the shallow-water wave theory. The results
suggest that nonlinear tuning of the tanks is appropriate; that
the tanks are robust in dissipating energy over a wide fre-
quency range, particularly for large amplitude excitation; and
that caution for design of tanks for excitation for high fre-
quency ratios should be exercised due to the jump phenome-
non. Because of its robustness and hardening spring behavior,
the design damper frequency (if it is evaluated by the linear-
ized wave theory) must be tuned at the value lower than that
of the structural response frequency.
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