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In recent years, tuned Lquid dampers (TLD) have been successfully employed in
practice to mitigate undesirable structural vibrations. Although this device has many
advantages, its damping mechanism has not been thoroughly investigated, nor are any
definite guidelines available for TLD design. In this study, the behavior of TLD is
mvestigated experimentally and numerically. The results are incorporated into the

development of a design procedure.

Shaking table experiments were conducted to investigate the characteristics of the
shallow water sloshing motion in rectangular or circular tanks under small and large
amplitude excitations. The results reveal that the most distinguishing characteristic of the
shallow-water is a hardening-spring type nonlinearity. The nonhnearity is explicitly
quantified using the jump-frequency as a function of excitation amplitude and tank size. It
was found that the characteristics of nonlinearity are different in two regions: identified as

the weak wave breaking and strong wave breaking regions.

An equivalent TMD model was developed to capture the energy dissipation capacity
of the TLD based on the experimental results by means of energy dissipation curve
matching. The nonlinear stiffness and damping characteristics of the TLD were

incorporated into this model as functions of excitation amplitude and tank size.



A numerical fluid model using the random choice method to solve the shallow-water
wave equations proposed by Gardarsson and Yeh (1994) was employed to simulate

shallow-water sloshing motion in a rectangular tank. It was found that the model

accurately simulated weak or moderate wave breaking. However, the mode] cannot

capture the wave phenomenon under extremely strong excitation motions.

Numerical schemes were developed to simulate the dynamic motions of a single-
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degree-of-freedom structure coupled with a TLD. Based on the captured nonlinear
properties of the TLD, a nonlinear tuning procedure is proposed. The performance of
TLDs in mitigating the structural vibration was evaluated using the interaction model of a
< structure with a proposed equivalent TMD. The results reveal that the nonlinear tuning
enhances the TLD performance. A TLD design procedure under harmonic and white

g noise excitations is developed based on the results of performance investigations.

Finally, the performance of TLDs under wind or earthquake conditions was
investigated numerically. For the simulated wind condition, the selected TLD reduced the
structural vibrations significantly. For the Northridge earthquake, the TLD was ineffective
during the initial stage of the carthquake. The performance of the TLD for earthquake

loadings must be further investigated.
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CHAPTER 1

INTRODUCTION

Undesirable vibrations of lightly damped, flexible modern structures have created
concern in the structural engineering community. Although these vibrations are related to
serviceability problems, such as occupant comfort and cladding integrity, rather than
affecting the primary load-bearing capacity, the economic considerations are significant.
The most promising solution to mitigating these vibrations is through the use of artificial

damping devices.

In recent years, one type of passivé damping system, called the tuned liquid damper
(TLD) has been successfully employed in practice, e.g., Fediw, et al. (1993); Fujii, et al.
(1990); Tamura, et al. (1988); Ueda, et al. (1991); Wakahara, et al. (1992, 1993).
Although this type of device has many advantages, the mechanism by which it dissipates
energy related to undesirable vibrations is not completely understood, nor has it been
thoroughly investigated.  The primary objective of this study is to investigate
experﬁnéntaﬂy and numerically the behavior of tuned liquid dampers in order not only to
identify the underlying physical phenomenon of the liguid sloshing behavior that
contributes to the damping capability of the device, but also to mcorporate such

knowledge into the development of a design scheme.

In this chapter, a review of background information for this study will be presented.

Following this review, an outline of the organization of this dissertation is provided.

1.1 Tuned liquid damper (TLD)

The tuned liquid damper is a passive mechanical damper designed to suppress
undesirable structural vibration through the liquid sloshing motion in a rigid tank. The

vibration energy is dissipated by means of friction in the boundary layers of the fluid,



contamination of the free surface and wave breaking. Water is most commonly used as a
liquid for the TLD, hence, the words “water” and “liquid” are used interchangeably

throughout this study.

For analysis purposes, the water in rigid tanks is classified as “deep” or “shallow”.
The specific classification is based on the ratio of the water depth to the wave length in the
direction of motion. The damping mechanism in the water is developed primarily by the
viscous action in the boundary layers near the bottom surface and the side walls of the
tank and the sloshing motion of the free surface layer of the water. As a damper, deep
water is limited in its damping capability because a large portion of the water does not
participate in the damping mechanism. Shallow water maximizes the participation of the

water in the damping action. This research focuses on the TLD using shallow water.

The motion of liquids in rigid containers has been a subject of many studies due to its
frequent applications in engineering disciplines, e.g., Chaiseri, et al. (1989); Chester, et al.
(1968); Faltinson, et al. (1978); Housner (1959); Lepelletier (1988); Miles (1976); Modi,
et al. (1988); Shimizu, et al. (1987). Notable progress in numerical simulation of the
shallow water for the rectangular TLD was made by Sun (1992). Because his analytical
model can not simulate the water sloshing motion with wave breaking, he introduced two
empirically-based coefficients for damping and frequency shift in the governing equations.
Koh et al. (1994) modified Sun’s model to make the energy dissipation term applicable to
arbitrary excitations. Gardarsson and Yeh (1994) proposed a numerical solution scheme

to solve the shallow-water equations using the random choice method (RCM),

Recently, successful applications of TLDs to civil engineering structures have been
reported. It was found that the TLD has several potential advantages over other damping
systems, such as low installation and maintenance cost; fewer mechanical problems; no
fail-safe devices required; activated at even low excitation levels; and easy adjustment of
the damper parameters even after installation by adjusting the water level in the tank. This

result implies a promising future of TLD as a damping device for various types of civil



engineering structures including super flexible tower-type structures and high-rise
buildings. It is also noted that there exist difficulties in TLD design because of the
complex behavior of liquid sloshing that involves a consideration of wave breaking and

amplitude dependent nonlinear characteristics.

1.2 Damping mechanism of the TLD

In this section, the damping mechanism of the TLD is reviewed. Because the tuned
mass damper (TMD) is a well-known passive mechanical damping system that has been
used widely for serviceability-based structural vibration control, the damping mechanism

of the TMD is continuously referenced in explanations of the TLD.

Figure 1.1 demonstrates schematics of passive mechanical dampers (TLD & TMD)

FEETETTTTITTITRIIITITI NI

(a) Resisting Force (b) Energy Flow

§Figure 1.1 Mechanisms of the mechanical dampers (TLD & TMD): F, = excitation force;§
\F 4 = Tesisting force by dampers; E, = energy input; E, = energy absorbed by dampers; Ed§
m energy dissipated by dampers; E = energy returned to structure; E = structur&li
| vibration energy. ,
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attached to a structure. Figure 1.1(a) schematically illustrates the inertia forces of the
solid mass in the TMD and the water mass in the TLD resisting structural motion as the

structure is subjected to an external force. Figure 1.1(b) presents the energy flow among

the excitation force, the structure and the damper. The dampers absorb a part of the

i structural vibration energy. The absorbed energy is dissipated through the damper’s
4 inherent damping capacity. The energy flow from the structure to the damper is called the
“energy absorption mechanism”. The damper changes the dynamic characteristics of the
structure by changing the phase of the structural motion through the absorption
mechanism.  The structural vibration energy is dissipated through the energy dissipation

capacity of the damper.

‘ The motion of the solid mass and the characteristics of the stiffness and damping of
g the TMD have been thoroughly investigated. However, the motion of the water mass and

the characteristics of the stiffness and damping of the TLD have not been subject to the
same level of scrutiny. In particular, as the wave breaking occurs, the water sloshing

motion cannot be predicted by analytical methods.

1.3 Performance measarement of damping devices

The ultimate goal of this research is to develop a design process for the TLD. The

design criteria must be evaluated in the context of damper performance. Performance of

the damper is defined as the capability to reduce undesirable structural motion effectively

and robustly. Effectiveness of the damper may be assessed in several ways, including one

or more of the following (Reed, et al., 1996):

* Reduction in peak or RMS structural displacement;

* Reduction in peak or RMS structural acceleration;

* Increase in “effective damping” of the combined system when the main system coupled
with the damper is treated as a single-degree-of-freedom combined system; or

* Increase in energy dissipation per cycle over a system without a damping device.
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Performance of the damper in terms of robustness is another mportant consideration
in damper design. Robustness of the damper performance is not a well-defined term.
However, in general, it would be qualitatively defined as “the level of msensitivity of the
damper effectiveness to slight offsets in damper parameters from the desired values.” The
damper parameters in this sense include, but are not limited to, the tuning and damping
ratios of the damper. The offset in the damping parameters occurs mainly due to the
inaccurate estimations of the structural properties, damper properties, mass ratio, or
loading conditions. In this research, the robustness of the TLD will be assessed in the

context of energy dissipation over a wide range of excitation frequencies.

1.4 Objectives and scope of work

Despite several successful applications as well as numerical and experimental
investigations of the TLD behavior, there currently exist limitations which restrict the
designer’s ability to effectively employ the TLD as a damping device. These limitations

include, but are not limited to, the following:

¢ The underlying physical phenomenon of the water sloshing motion is not thoroughly
understood. Although the wave breaking phenomenon is common in real practice,
water sloshing with wave breaking has rarely been addressed in research. Some
important characteristics of shallow water sloshing motion such as nonlinearity have
been identified but not explicidy quantified.

* Present methods for TLD design involve many approximations and there are no

definitive guidelines.

In recognition of these limitations, the primary objectives of this study were established as

follows:

¢ To investigate the characteristics of the shallow water sloshing motion in a tank using

shaking table experiments under small and large amplitude excitations.
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* To explicitly identify and quantify parameters which significantly influence the TLD
performance.

* To develop a simple mechanical model of the TLD based on the experimental results.

* To identify a numerical fluid model based on the shallow-water equations for use in
prediction of tank behavior.

* To develop a design procedure for the TLD.

In this thesis, background theory and results of the experimental investigations will be
presented prior to the numerical models. Design procedures and their applications under

various loading conditions will be discussed.

Chapter 2 presents the results of experimental investigations of the characteristics of
shallow water waves in rectangular and circular tanks. The behavior of wave breaking in
rectangular tanks is examined in detail. Because structural vibration is not purely uni-axial
motion, circular TLDs may be more feasible than rectangular ones. The characteristics of

wave motion in circular tanks are discussed based on the experimental results,

In Chapter 3, an equivalent TMD model of a TLD of rectangular or circular shape is
proposed. This model possesses nonlinear stiffness and damping calibrated from the
experimental investigations. This model is called the NSD model because of the nonlinear
stiffness and damping parameters. An energy dissipation matching scheme used to identify
these parameters will be described in detail. A numerical scheme to solve the shallow-
water wave equations using the random choice method (RCM model) proposed by

Gardarsson and Yeh (1994) will be evaluated based on the experimental results.

In Chapter 4, numerical schemes to model the interaction of a TLD with a single-
degree-of-freedom structure are developed. The capability and limitations of the RCM
model are evaluated. Frequency response analysis methods coupled with an iterative
procedure to solve the nonlincar system are developed for harmonic or white noise

excitations. Performance of the TLD is evaluated using the solution scheme. A dynamic
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searching scheme for the effective TLD design is proposed. Performance of TLDs under
wind or earthquake conditions is investigated. Wind pressure time series data were
generated using an autoregressive model. Ground displacement data for Northridge
earthquake were selected for the study. Conclusions of the research are summarized in

Chapter 5.
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CHAPTER 2

EXPERIMENTAL INVESTIGATIONS OF SHALLOW WATER WAVES IN
RECTANGULAR AND CIRCULAR TANKS

A series of shaking table experiments were conducted to investigate the
characteristics of water sloshing motion in rectangular and circular tanks under various
base excitation conditions. The results for harmonic base excitation are presented in this

chapter. The results for earthquake conditions will be discussed in Chapter 4.

2.1 Shaking table tests

2.1.1 Test set-up

Figure 2.1 shows the schematic diagram of the shaking table experiment set-up. The
experiment was conducted using the facilities in the structural dynamics laboratory at the
University of Southern California. The components of the experimental set-up are

described below:

1) Shaking Table: The MTS shaking table can generate a horizontal motion in one
direction. The shaking table has capacities of *51 mm maximum displacement, 890
mm/sec maximum velocity, 4¢ maximum acceleration, and 0 to 50 Hz operating
frequency. The amplitude and the frequency of the harmonic shaking table excitation was
controlled manually using the console panel. The feed-back signal from the actuator is

recorded as the shaking table displacement, x,.

2) Loadcell: The multi-component transducer can measure six directional components of

force/moment. The loadcell was calibrated on site under static and dynamic loads.
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:Figure 2.1: Shaking table experiment set-up

3) Wavegage: Capacitance-type wave gages were installed near the end wall, at the mid-
tank™" and at the middle of the side wall of the circular tank. The gages near the wall are
located at 17 mm and 40 mm from the inside surface of the tank wall for the rectangular

tank and the circular tank respectively.

4) Laser-light sheet: A higher-power (4W) Argon-ion laser projects a laser beam. The
laser beam is directed through fiber-optics and converted to a thin laser sheet by a scanner.
The image of the vertical laser-sheet illumination through the water depth is captured by a
video camera and processed with a microcomputer. The quantitative video visualization

allows for analysis of the spatial, as well as temporal, variations of the water surface

profiles.

" In the shortest tank (L=335 mmy}, wave gage was installed only at the end wall because there was no space for
mounting. For the circular tank, an additional wage gage was instalied at the middle of the side wall.
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5) A harmonic function generator was connected to the actuator to control the motion of

the actuator. The data were collected using a 16 channel data acquisition system.

6) Tank: The tanks were fabricated from clear acrylic plates. The bottom plates of the
tanks are 19 mm (34”7) thick. The side plates are 13 mm (44™) thick for the rectangular
tanks and 6 mm(%4”) thick for the circular one. Water was used for these experiments.
The configurations of the tanks are illustrated in Figure 2.2 and described in Tables 2.1

and 2.2.

2.1.2 Test cases

One of the primary objectives of the experimental study was to investigate the
behavior of the water sloshing motion and the effects of the excitation amphtudes and
frequencies, tank configurations and liquid depth on the sloshing behavior. Three different
sizes of rectangular tanks and one circular tank were investigated in the study. The
rectangular tank sizes were selected on the basis of previous investigations for rectangular
tanks by Sun, et al. (1991) and Koh, et al. (1994). The circular tank size was selected to
maintain the fundamental natural frequency of the water sloshing with the same depth of

water as one of the rectangular tanks. Each tank filled with the desired level of water was
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excited with various amplitudes and frequencies as described in Tables 2.1 and 2.2. The

data were recorded after the water sloshing motion reached the steady state.

Based on the linear wave theory (Lamb, 1932), the fundamental natural frequency of

the water sloshing motion, f,,, was calculated by

_ 1 m Ay
Fo =gy b )

for a rectangular tank (2.D)

Table 2.1: Data for the experimental investigations of rectangular tanks.

Tank Size Water | Water | Natural Excitation Amplitude
Length | Width | Depth | Depth Freq. '
L b hy Ratio fu A A/L
(mm) | (mm) | (mm) £ (Hz) (mm)
335 203 9.6 0.029 0.457 10,20.40 030 -.119
335 203 15 0.045 | 0571 2.5,5,10,20,30 007 - 119
590 335 15 0.025 0.325 2.5,5,10,20,30,40 004 - 068
590 335 22.5 1 0.038 0.397 2.5,5,10,20,30,40 004 - 068
590 335 30 0.051 0.458 2.5,5,10,20,30,40 004 - 068
590 335 45 0.076 0.558 20 .034
900 335 30 0.033 0.301 2.5,5,10,20,30,40 .003 - 044
900 335 40 0.044 0.347 2.5,5,10,20,30,40 .003 - .044
900 335 55 0.061 0.406 10,20 011 -.022
900 | 335 71 10079 | 0459 2.5,5,10 003 - 011
Table 2.2: Data for the experimental investigations of circular tanks
Tank Water Water Natural Excitation Amplitude
Diameter | Depth Depth Freg.
D h, Ratio f. A A/D
(mm) (rmm) £ (Hz) (mm)
690 15 0.022 0.325 10,20,40 014 - 058
690 22.5 0.033 0.397 10,20,40 .014 - 058
690 30 (.043 0.458 2.5,5,10,20,30, 40 .004 - 058
690 40 0.065 0.558 2.5,5,10 004 - 014
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1 117 117
and z——\/ 78 (-

w =g 5 tan I ) foracircular tank  (2.2)

where g is gravity acceleration, L and D are the length and the diameter of the tank,

respectively, and k, is the undisturbed water depth as illustrated in Figure 2.2.

2.2 Characteristics of water sloshing motion in rectangular tanks

In presenting the experimental results, several key parameters will be used. These

are defined as follows:

The wave height, 77, is defined as the water surface elevation from the undisturbed
state. In the experiments, it was measured by wave gages near the end wall, at the mid-
tank (when possible} and at the middle of the side wall (for the circular tank only). The

quantity is nondimensionalized by dividing by the undisturbed water depth, h,, as
po
n= P (2.3)

The base shear force, F, 1s defined as the reaction force of the water tank created

by water sloshing motions induced by the shaking table movement. In this analysis, the
measured base shear force was obtained by subtracting the inertia force of the tank from
the total force measured by the loadcell to identify the force due to water sloshing motion
only. In order to eliminate the undesirable high-frequency system noise, which is always
present in the laboratory data, a low-pass filter was applied to the measured data. The
applied low-pass filter will be discussed later in this section. The base shear force is

nondimensionalized as

Fl=—"» (2.4)
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where m,, is the mass of the water in the tank, @ is the excitation angular frequency of the
shaking table, A is the shaking table excitation amplitude and the product m, @’ A is the

maximum inertia force of the water mass treated as a solid mass,

The amount of energy dissipation per cycle is an important concern for vibration

control. As will be seen in the interaction model of Equation (4.1), the base shear force,

e S

F, , generated by the water sloshing motion resists the excitation motion. Therefore, a

measure of this force in dissipating energy is critical to this investigation. The energy
dissipation per cycle, E, , is defined as the work done by the base shear force during one
cycle of the shaking table motion. This quantity is represented by the area of force-

displacement ( F, - x,) loop which can be calculated by

*

g E,=[F,dx, (2.5)
T

where 7, is the period of the shaking table motion and x, is the shaking table displacement.

The energy dissipation per cycle is nondimensionalized as

E ‘ .
E} =t (2.6)

l (G)Az
2@

S 0 S o A

where m, (@A)* /2 is the maximum Kinetic energy of the water mass treated as a solid

mass. In the next section, an examination of these parameters is presented for the

experimental cases.

In the data analyses, a low-pass filter' was employed to eliminate the high-frequency
system noise or to separate each frequency component of waves. The natural fandamental
frequency of the empty tank system which comprises the empty tank, the loadcell and the

mounting system was identified at approximately 10 Hz. The noise from the shaking table

! Zero-phase forward and reverse digital filtering technique was employed using 5% order low-pass digital
Butterworth filter. Refer to Matlab commands “BUTTER” and “FILTFILT" in signal processing tootbox.
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system was measured at much higher frequencies. To eliminate the high-frequency system
noises, the cut-off frequency of the 10w~pass-ﬁ}ter must be set to a lower value than 10

Hz: e.g., the cut-off frequency was set to 5 Hz for the loadcell-measured base shear data

along the excitation direction. For shallow water in a rectangular tank, the natural

frequencies of each mode of the sloshing motion can be expressed as

fo = nf (2.7

where the subscripts indicate the mode number and Jf; is the fundamental natural frequency
that can be calculated from Equation (2.1). To identify the effect of each mode of water
sloshing motions, it is necessary to filter out all frequency components higher than the
designated frequency. This filter-out was done by adjusting the cut-off frequency of the
low-pass filter to a desired value: e.g., to obtain the data including up to n™ mode, the cut-

off frequency of the low-pass filter was set to (n+0.5) times the fundamental natural

L o L L
W

frequency, i.e., cut-off frequency = (n+).5) 5

2.2.1 Time history responses of water sloshing motion at steady-state for harmonic
excitation

Figure 2.3 shows the sample time history responses of the steady-state water
sloshing motions for the rectangular tank of length L = 590 mm, water depth A, = 30 mm
and excitation amplitude A = 20 mm at the harmonic base excitation frequency ratios B=
0.7, 1.0, 1.2 and 1.4, respectively. The excitation frequency ratio in the horizontal axis is

defined as

B= (2.8)

bl e

where f, is the shaking table excitation frequency and £, 18 the fundamental natural
frequency of water sloshing calculated with Equations (2.1) or (2.2). In the figure, n] and
7, are the nondimensional wave heights near the end wall and at the middle of the iank,

respectively. F and F, are the base shear force measured along and across the direction
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Figure 2.3 Sample time histories of water sloshing motions in the shaking table tests for

the case of the tank with length L=590 mm, water depth h,=30 mm, and excitation
amplitude A=20 mm; the water surface elevation at the end wall n," and at the mid-tank

7, and the base shear forces F_ and £, in the direction of along and across excitation,

respectively. fJis the excitation frequency ratio.
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of excitation, respectively. The raw data measured with the loadcell contain system noise,
As will be discussed in Section 2.2.3, contribution of the frequency-components higher
than 5 Hz on the wave motion is not significant and can be ignored. Therefore, a low-pass

filter with cut-off frequency of 5 Hz was applied to the raw data of F,_ to eliminate the

system noise. The raw data of £, are filtered by a low-pass filter with cut-off frequency

of 10 Hz. At the excitation frequency ratio 8= 0.7, small and smooth waves develop. At
higher excitation frequency ratios f§ of 1.0 and 1.2 which are near the fundamental natural
frequency of the TLD, strong waves develop and wave breaking occurs. In this range of
excitation frequencies, higher-frequency waves riding on the primary wave appear in the

wave motion. The wave motion dramatically decreases at B=1.4.

Figure 2.4 presents the steady-state time history responses of the water surface

% elevations at the end wall, 7], for the case of the tank with length L = 590 mm and water

depth &, = 30 mm at various excitation frequencies for the excitation amplitudes A = 10,

A R

20 and 40 mm, respectively. Wave breaking was apparent over a wide range of
frequencies for each excitation amplitude éase. High-frequency waves are evident in the
wave motions. The high-frequency components of the wave decrease at larger amplitude
excitation, The wave shapes show significant irregularities. The irregularities become
more significant as the excitation amplitude increases and are taken into account in the
data analyses. It is apparent that the water sloshing motion changes depending on the

excitation amplitude and frequency.

Figure 2.5 illustrates the loadcell-measured base shear force due to water sloshing

motions, F, for the same cases as Figure 2.4. The irregularities previously observed in

the wave height measurements are not significant for the base shear force data. The
influence of high-frequency waves is less significant on the base shear force than on the

wave height. The high-frequency waves decrease as the excitation amplitude increases.
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Figure 2.4 Sample time histories of the nondimensional wave heights for the steady-state
wave motion at various excitation frequencies for the cases of the tank with length L =
590 mm, water depth h, = 30 mm and excitation amplitude A = 10, 20 and 40 mm,
respectively.



Fox ()

=1 B=1.1 R=1.22

AR
Fyy (1)

B=0.9
(M A=20mm

A s i

=1 B=1.18 B=1.35

Fou (N)

(¢} A=40mm

the same conditions as Figure 2.4.

B=1.55

(sec)

{sec)

(sec)

I8

Figure 2.5 Sample time histories of the measured base shear force in the x-direction for
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Figure 2.6 contains plots of the base shear force vs. the shaking table displacement
(F,-x, loops) for the same cases as in Figure 2.5. The dashed lines indicate the base shear
forces including only the fundamental mode of water sloshing. The solid lines indicate the
base shear forces including higher modes up to 5 mode. The effects of the higher modes
of water sloshing motions on the time history base shear forces can be determined by
comparing these two curves. The higher modes change the time history of the magnitude
of the base shear forces. However, the amount of the energy dissipation per cycle which
is calculated by the area inside the loop does not change significantly by the higher modes.
For example, for the sweep frequency cases of the tank with length £=590 mm, water
depth A, = 30 mm and excitation amplitude A = 20 mm, the difference in the energy
dissipation using the two representations is on average about 2 %. As mentioned in

Chapter 1, the energy dissipation capacity is a measurement of the performance of tuned
liquid dampers. The magnitude of the base shear force ]wa and its phase lag ¢ from the

shaking table displacement are two major factors determining the area inside the contour.
The time history magnitudes of the base shear forces during one cycle can be most

accurately represented by the RMS values.

2.2.2 Frequency responses of water sloshing motion
As observed in the study of time history responses in the previous section, the
characteristics of water sloshing in the tank depend on the base excitation amplitude A, the

tank length L, and the water depth hy. The three primary parameters may be combined to

define the secondary parameters: the linear fundamental natural frequency f,, the base

excitation amplitude in acceleration A, and the water depth ratio & The linear

fundamental patural frequency f, is defined in Equations (2.1) or (2.2). The base

excitation amplitude in acceleration is defined as A=w,’4 i whichw, = 27f, = 2nff, .

The water depth ratio is defined as £ = -—hf The effects of each parameter on the water

sloshing motions are investigated and discussed in this section.
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Figure 2.6 Energy dissipation curves of the base shear force F,_ vs. the shaking table
displacement x, for the same conditions as Figure 2.5. The dashed lines represent
calculations including higher modes up to 9® mode: the solid line represents calculations
only including the first mode.
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To investigate the effects of the base excitation amplitude upon wave motion in the
tank, the experimental cases of the tank with length L = 590 mm, water depth hy =30 mm
are examined under various excitation amplitudes A = 10, 20 and 40 mm. Figure 2.7
shows the frequency sweep plots of several nondimensional quantities: the maximum

wave height near the end wall 77, .., the maximum base shear force F.

w,mazx *

the phase
angle ¢ of the fundamental mode of F, from x,, and the energy dissipation per cycle
E,.

The maximum wave height increases as the excitation frequency increases toward
the fundamental natural frequency of the TLD. The wave height reaches peak value at the
excitation frequencies higher than the fundamental natural frequency, ie., 8> 10. This
phenomenon illustrates the nonlinear characteristics of the water sloshing motions. After a

gradual, fairly smooth build-up to a peak value, at a certain excitation frequency, the value

of 7, drops dramatically. This excitation frequency is referred to as the “jump

frequency”, Fump and used as a parameter representing the nonlinearity of the wave
motion. The existence of the jump frequency at f > 1.0 indicates that the water sloshing
motion displays a “hardening-spring type” nonlinearity. As the excitation amplitudes

increase from A=10 mm to A=40 mm, the jump frequency ratios increase from about 1.22

to 1.55, where the jump frequency ratio is defined as 8, = =2 This indicates that the

Jump f
w
nonlinearity of the water sloshing motion becomes stronger as the excitation amplitude

increases. In summary, as the base excitation amplitude increases:

¢ The resonance frequency increases.

* The peak value of the maximum wave height increases over all frequencies.

* The magnitudes of the base shear and the energy dissipation increase. However, the
nondimensional maximum base shear and the corresponding nondimensional energy

dissipation per cycle decrease.
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Figure 2.7 Sample frequency responses of water sloshing motion in shaking table tests of
the tank with length L = 590 mm, water depth 4, = 30 mm and excitation amplitude 4 =

10, 20 and 40 mm.
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* The slope of phase angle curve decreases over sweep excitation frequencies.
» The region of excitation frequencies at which the water sloshing motion is active

becomes wider.

Figure 2.8 presents two sweep frequency plots of the maximum wave heights at the

end wall of the tank 7, . to investigate the effect of the water depth h, upon the water

sloshing motion in the tank. The two primary parameters A and L are fixed while the
water depth A, varies. Figure 2.8(a) shows the frequency responses of the tank with
length L = 590 mm with water depth s, = 15, 22.5, 30 and 45 mm respectively under the
excitation amplitude A = 20 mm. Figure 2.8(b) presents the same plots of the tank with
length L = 900 mm with water depth 4, = 40, 55 and 71 mm under the excitation
amplitude A = 10 mm. Although slight variations in the shape and magnitude of the
curves are observed, the water depth does not significantly influence the water sloshing

motion in the range of selected experimental cases.

Figure 2.9 contains the sweep frequency plots of the maximum wave heights at the
end wall of three tanks with lengths L = 335, 590 and 900 mm, respectively for excitation
amplitude A = 10 mm. The water depth of each tank was determined such that the linear
fundamental natural frequencies f, of the tanks become identical: in this case S, = 0.458
Hz. Tt is observed that the smaller tank with the shallower water depth develops the
stronger wave motion and the higher jump frequency. Because the effect of the water
depth is not significant as observed in Figure 2.8, the differences in three curves reflect
mainly the influence of the tank length L on the wave motion. Apparently, the length of

the tank influences the water sloshing motion significantly.

The data shown in Figures 2.7 through 2.9 indicate that the water sloshing motion in
the tank is significantly influenced by the excitation amplitude and the tank length. The
underlying physical phenomenon is described in the following paragraphs.



R

24

1.5 T T
e hiz] STNIR

- = k=22.5mm
1} -~ h=30mm

nl Thax

0.5

0 1
(EX ) a7 0.8 9.9 H 1.1 1.2 13 1.4 1.5 1.6

(a) L=590 A=20

} 3 1 T t H 1 T T ¥
e h=4(mm
08 F — — h=55mm E
+ e h=Tlmm
é 06 b
= 0.4 i
02k B
0 N 1 1
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5 1.6
Excitation Frequency Ratio,
(b) L=900 A=10 quency Ratio. f

Figure 2.8 Sample frequency responses for the selected experimental cases to investigate
the effect of water depth A, on the water sloshing motion.
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Figure 2.9 Sample frequency responses for the selected experimental cases to investigate
the effect of tank length L on the water sloshing motion.
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Based on the shallow-water wave theory, the propagation speed, S, of a smooth

wave may be expressed as

S =yglhy+m) = fgh,(1+7) 2.9)
where 1° = *h% . Because the wave length L, of the fundamental mode of sloshing motion

i a rigid tank with length L can be calculated by L, = 2L, the fundamental frequency of
the tank, £, is calculated by

_ S N8
f=37= S VI+T (2.10)

Considering the “linear” fundamental natural frequency of the shallow-water wave based

on Equation (2.1) as

\/—SE 2.11)

2L

the ratio of the real fundamental natural frequency to the linear fundamental natural

K

fw

frequency is approximated by

L. I+17 . (2.12)

fw ) .
Equation (2.12) indicates that the natural frequency of the shallow-water wave is a
function of the wave height. Because the wave height is related to the excitation
amplitude A and the tank length L as observed in Figures 2.7 through 2.9, the frequency
shift ratio is dependent on these two parameters. In other words, the nonknearity of the

shallow-water sloshing is, at least, a function of A and L.

As mentioned previously, the jump frequency can be used as a representation of the
nonlinearity of the water sloshing motion. Figure 2.10 shows the relationship between the
jump frequency and the two parameters A and L. In this plot, the parameter
“nondimensional excitation amplitude” is introduced, which combines the two parameters

in the form of
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‘ Nondimensional Excitation Amplitude, A=A/L

?Figurf: 2.10 Relationship between the jump frequency ratio and the nondimensional
;excitation amplitude based on experimental results.

(2.13)

The values of the jump frequency ratio ﬁjmp for all experimental cases described in Table
2.1 were plotted against the nondimensional excitation amplitude. These two parameters
exhibit clear correlation. The approximate functional relationship between these two

parameters change slope at A = 0.03 in this log-log scale plot. The regression line of ﬁjump

on A in each region is determined using the least squares method as

Bump = LBSA™ as A<003 and
B i = 289N as A=003.

(2.12)
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These equations reflect that in the region of larger excitation amplitude,
approxmmately A > (.03, the slope of the regression line mcreases. This means that the
rate of change in the jump frequency becomes faster in this excitation amplitude range.
This result implies that the nonlinearity of the water sloshing motion changes more rapidly

in this region.

2.2.3 Higher modes of water sloshing motion

As discussed in the previous section, the higher modes of water sloshing are
apparent in the time history responses of the wave height and the base shear force near the
resonance frequency. The effects of the higher modes of the water sloshing motion on the
energy dissipation plots have been also discussed. In this section, the effects of the higher
modes are systematically investigated wusing the frequency response plots of the

experimental results.

Figure 2.11 presents the results of the experimental nvestigation for the tank with

length L=590 mm, water depth &, = 30 mm and excitation amplitude A = 20 mm. It
contains the plots of 7., F, . Foom and E, filtered with four different cut-off

frequencies such that each curve includes only the low frequency components up to the

designated mode. By comparing these curves, the effects of the higher frequency

components upon the water sloshing motions are summarized as follows:

e The effect gradually increases as the excitation frequency increases up to jump
frequency.

o The effect is most significantly related to n__. It is less significantly related to F,
and negligible for E, .

¢  The effect is less for RMS values than peak values of 77 and F..

s The contribution of the frequency components higher than 9" mode on the wave

motion is not significant and can be ignored.



28

T H
model only L
— — upto model T 4 \:)-/“

1r - e ypto modes ‘,-__'u_",‘{"';;\—--‘:/\ - 7
Ef 4p to mode9 T ~ -y
E.

F 05
{) H H ) 1 ] I 1.
0.7 0.8 .9 1 1.1 1.2 1.3 14 1.5

(a) Maximum wave height near end wall

i I A ) i 3 3

0
0.7 0.8 0.9 i 1.1 1.2 1.3 1.4 1.5
{b) Maximum base shear force

2.5 T H PRI T T T T

G5

1 i i i i i3

(} L

0.7 0.8 0.9 1 1.1 1.2 L3 14 1.5
(c) RMS base shear force

20 L T i T T | 1

15

. B 10
w

1 1 £ i H H

0
0.7 0.5 0.9 1 1.1 1.2 1.3 1.4 1.5

{d) Energy dissipation per cycle Excitation Frequency Ratio, §

Figure 2.11 The effects of higher frequency components of the water sloshing motion
upon its frequency responses for the tank with length L = 590 mm, water depth hy = 30

mm and excitation amplitude A = 20 mm.
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» The higher frequency components of the water sloshing motion do not contribute to
the energy dissipation capacity of the TLD. Therefore, performance of the TLD can
be accuorately predicted by considering only the fundamental mode of the water

sloshing motion.

2.2.4 Calculation of the base shear force based on the wave height near the end

walls of rectangular tank.

The TLD generates a hydrodynamic force due to the water sloshing motion. For
small amplitude excitation, it is common practice to approximate the hydrodynamic force
by the hydrostatic pressures on the tank end walls. In large amplitude excitation, the wave
breaks in a certam frequency region. The approximations for hydrostatic pressure and

ignoring the vertical acceleration of the water particles must be investigated.

As shown in Figure 2.11, the true water sloshing responses can be closely
represented by including low frequency components up to 9™ mode. Because the 9‘h mode
frequencies of the tanks for all experimental cases are lower than 10 Hz at which the
system noises exist, the low pass filter with cut-off frequency between the 9% mode
frequency and 10 Hz was applied to the experimental raw data to eliminate the system

noise.

Assuming hydrostatic pressure on the tank end walls and ignoring the vertical
acceleration of the water particles, the hydrodynamic force of the TLD, F ., hereinafter the

linear hydrodynamic force, can be calculated by

1
F, = Epgb(hf -h%) (2.15)

where p is the water density; g is the acceleration due to gravity; b is the tank width and ,

and hr are the water surface elevations at the end walls.

Figure 2.12 presents the frequency responses of the tank with length L=590 mm,

water depth 2,=30 mm and excitation amplitude A=20 mm. The solid curves represent the
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Figure 2.12 Comparison of the base shear force, Fn, calculated from the wave height and
the one measured by the load cell, £, for the tank with length L=590mm, water depth
h,=30mm and excitation amplitude A=20mm.
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base shear force, F, measured by the loadcell. The dashed curves indicate the linear
hydrodynamic forces, Fn calculated from the measured wave heights at the end wall of the

tank using Equation (2.15). Both data were filtered to retain the lower frequency
components up to the 9" mode. The nondimensional values of the maximum and RMS
base shear forces, the phase angle of the two forces from the shaking table displacement

and the energy dissipation per cycle by the two forces are plotted vs. sweep frequency.

In the plot for the maximum values of the two forces, significant discrepancies are
observed in both shape and magnitude, particularly near the resonance frequency. These
discrepancies can be explained as follows: After the peak wave hits the end wall, the
remaining bulk mass of the water runs up the end wall. Although this latter run-up does
not develop significant hydraulic pressure, the calculated force derived from wave height
alone reaches its maximum value. Consequently, the maximum calculated force may be
exaggerated. Because the duration of the wave run-up is short, the discrepancy is reduced
in the plots for the RMS of the forces. Plots for the RMS values of two forces are more
similar. However, the discrepancy in the magnitude of the damping forces near the

resonance frequency is still about 10 to 20 %.

The phase angles of Fn lag behind those of F, over the entire range of sweep
frequencies. The differences fall within the range of less than 0.157. This discrepancy is
assumed to reflect that the maximum value of F is captured after maximum F, was

measured because of the run-up discussed previously and the distance of the wave gage
from the end wall. The energy dissipation plots reflect the combined effects of the

magnitudes and the phase angles of the two forces.
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2.3 Water sloshing motion in circular tanks.

The shaking table experiments were conducted for a circular tank with diameter D of
690 mm. The experimental cases are described on Table 2.2. The experimental cases for
the circular tank were selected to maintain the same fundamental natural frequency as the

rectangular tank with length L=590 mm and the same water depth.

Figure 2.13 presents sample time history responses of the water sloshing motions at
steady-state of the tank with diameter D=690 mm, water depth hy=30 mm and excitation
amplitude A=20 mm at various base excitation frequencies. The measured quantities are
the same as for the corresponding rectangular tank cases (Figure 2.3) except 17, is the
nondimensional wave height at the middle of the side wall. It is apparent that the water

sloshing motion depends on the excitation amplitude and frequency.

Figure 2.14 shows the frequency responses of the water sloshing motions in the
circular tanks for the same cases under the base excitation amplitude A = 10, 20 and 40
mm. These cases correspond to the rectangular tank cases presented in Figure 2.7. It is
observed that the shapes and the magnitudes of the wave heights, the base shear forces
and the energy dissipation per cycle for the circular TLD are similar to those of the

corresponding rectangular TLD.

Although the wave behavior in a circular tank is more complex than in the
rectangular one, in practice, it is often analyzed as an equivalent rectangular tank. The
observation of the similarity in trends of the water sloshing motion in a circular tank and
those in the comparable rectangular tank justifies the use of this approximation method for

the circular TLD.
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Figure 2.13 Sample time history responses of water sloshing motion for the circular tank
with diameter D=690mm, water depth 2,=30mm and excitation amplitude A=20mm.
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Figure 2.14 Sample frequency responses of water sloshing motion for the circular tank

with diameter D=690mm, water depth k,=30mm and excitation amplitude A=20mm.
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CHAPTER 3

NUMERICAL MODELS OF THE TLD

Two numerical models were investigated. The first is an equivalent TMD model
developed based on the experimental results. This model incorporates the nonlinear

stiffness and damping characteristics of the TLD, and is called the “NSD model”.

The second model is a fluid model based on the shallow-water wave equations
characterized using the random choice method (RCM model) which was proposed by
Gardarsson and Yeh (1994). A series of numerical analyses were conducted using this
model to simulate the water sloshing motion in rectangular tanks. This model is evaluated

by comparing the results with the experimental investigations.

3.1 NSD model - an empirically-based equivalent TMD model

The behavior of passive TMDs has been thoroughly investigated, e.g., McNamara
(1977); Warburton (1980, 1981, 1982). The use of a TMD model to represent the TLD is
attractive because of the body of knowledge devoted to the TMD and the similarity 1n the
mechanisms of the TLD and TMD as described in Section 1.2. In this investigation, an
equivalent TMD model that incorporates the nonlinear stiffness and damping
characteristics is developed on the basis of experimental results. This model is called the

“NSD model”.

3.1.1 Modeling

As discussed in Section 1.2, the water mass of the TLD reacts to the structural
movement in a similar manner as the mass of the TMD. The TLD exhibits its inherent
damping and stiffness characteristics due to its sloshing motion. After the damping and
stiffness of the TLD are quantified, the TLD can be modeled as a SDOF mass with

stiffness and damping.
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{Figure 3.1 An equivalent TMD model of the TLD

Figure 3.1 illustrates a TLD and the proposed equivalent TMD model as a SDOF
system with stiffness and damping parameters, k,; and c,, respectively. However, unlike
the TMD which is considered as a linear system, the TLD possesses strong nonlinear
characteristics- as observed in the shaking table experiments and mwst be modeled as a
nonlinear system. The stiffness and damping of the NSD model are determined such that

the base shear force (or damping force) due to the TLD, F,, and that due to the

corresponding NSD model, F, are equivalent under the same base excitation.

The damping force is characterized by its amplitude and phase. Alternatively, the
single parameter of energy dissipation per cycle, E . can be used to match the properties of
a TLD with its equivalent TMD representation. The energy dissipation per cycle is
defined by the area inside the loop of the damping force vs. the base displacement contour
as described by Equation (2.5). This quantity represents the combined effects of the

amplitude and the phase of the damping force on the structural motion over the period of
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one cycle.' In determining the properties of the NSD model, a comparison of the energy
dissipation has advantages over a comparison of the damping forces of two systems. First,
comparing one scalar quantity is more appealing. Second, as illustrated in Figure 2.11, the
effect of higher modes of the water sloshing on the quantity of the energy dissipation is
negligible. Therefore, in this investigation, the energy dissipation is employed as a

parameter for determining model parameters.

3.1.2 Energy dissipation matching scheme

Figure 3.2 presents typical sweep frequency plots of the nondimensional energy
dissipation per cycle for the TLD with length L = 590 mm, water depth 4, = 30 mm and

excitation amplitude A = 20 mm and for its corresponding NSD model.  The

r

nondimensional energy dissipation curve for the TLD (E,, , solid line) is determined from

measurements of the shaking table experiments using Equations (2.5) and (2.6). The

nondimensional energy dissipation for the corresponding NSD model ( £ d’ , dashed line) 1s
calculated using the procedure described in Appendix A.2 and summarized here. In
presenting this procedure, the following parameters are used: f, indicates the excitation
frequency; f, represents the linear fundamental natural frequency of the TLD as defined in
Equation (2.1); @, is the linear fundamental natural angular frequency of the TLD defined
by w,= 2nf,; Bis the excitation frequency ratio as defined in Equation (2.8); m,, is the

mass of the water in the tank; k, is the linear fundamental stiffness of the TLD defined by

k,=m s m, k, and c, are the mass, stiffness coefficient and damping coefficient of the

B
w W Y

corresponding NSD model, respectively; the critical damping ratio is defined as ¢, =

2m, o,; and the damping ratio of the equivalent TMD model, , is defined by
p=fe 3.1)
CCT‘

! See Appendix A2 for the relationship of energy dissipation to the damping force in SDOF system.
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{Figure 3.2 Matching scheme of the sweep frequency energy dissipation curves to obtain!
ithe stiffness hardening ratio, x, and damping ratio, ¢, of the NSD model of the TLD with!
{length L=590mm, water depth h,=30mm and excitation amplitude A=20mm. :

The stiffness hardening ratio, ; is defined by
k,

Ko 32
E) (3.2)

The frequency shifting ratio, &, is defined by
g=ds (3.3)

fo

If the NSD model shown on Figure 3.1 (b) is subjected to a harmonic base excitation
with frequency ratio f§, the amplitude and the phase of the damping force are expressed

respectively, in nondimensional form as follows'

! See Equations (A.16) & (A.7) in Appendix A.
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r

4

_NA+EE = )B) 4B
1+l -+ B

and o= tan‘l[ 2B ) ) (3.5)

(3.4)

~1+(1- 45 p?

The nondimensional energy dissipation for the NSD model at each excitation frequency is

obtained by the formula'

r

E, =2n

I

F,

sing . {3.6)

Ea,r is fit to Ew' by the least squares method over the frequency range of high energy
dissipation. In general, this matching region encompasses approximately 70 % of the peak
energy dissipation. The fundamental trends of the E y " curve for various model parameters

are described in Appendix A.2.

3.1.3 Determination of the model parameters based on shaking table test results for

rectangular TLDs

The matching scheme discussed in the previous section was applied to the
experimental cases for rectangular TLDs to determine the stiffness and the damping
coefticients of the equivalent TMD model. In general, for the case with smaller excitation
amplitude, the EW' curve becomes higher and narrower, which corresponds to lower
damping and lower stiffness of the model. As the excitation amplitude becomes larger, the
response curve becomes lower and wider, which leads, consequently, to higher damping
and higher stiffness of the model. The specific results are tabulated in Table E.1 in
Appendix E.

As discussed in Section 2.2 and illustrated in Figure 2.10, the nonlinearity of the

TLD in terms of jump frequency can be expressed as a function of A and L. Sun, et al.

' See Equation (A.19) in Appendix A.
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(1992) found that the nonlinearity of the TLD also depends on the parameter ¢ that is the
ratio of water depth &, to the tank length L. The damping of the shallow water sloshing
motion is difficult to determine analytically, especially, for wave breaking situations.
However, the damping ratio of rectangular TLD under small excitation amplitude is
expressed in Sun (1992) as

_Jov(1+2h/B+S)
2200+ ke,

- 3.7

which is a function of h, Therefore, it was assumed that the stiffness and the damping
coefficients are functions of three parameters: A, L and k,. To determine the contribution
of each parameter to the nonlinearity of the TLD, the two coefficients were plotted against
various combinations of these three parameters. The combination of three parameters
with which the data are best correlated is the best parameter for representing the
nonlinearity of the TLD. The nondimensional excitation amplitude for both coefficients

({ and «) was determined through an extensive searching for the best correlation as

A= (3.8)

B

This is the same parameter for the jump frequency plot as shown in Equation (2.13).

In Figure 3.3, the variation of damping and stiffness hardening ratios of the
equivalent TMD models for the experimental cases is plotted with respect to the
nondimensional excitation amplitude, A. The damping ratios are clearly correlated with A
over the entire range of excitation amplitude. The best fitted curve was determined using

the least squares method as

L =052A" . (3.9)
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For the stiffness hardening ratio of the NSD model, the figure shows two distinct
regions divided at A =003. In each region the slope is clearly different. This
phenomenon is consistent with the observation from the jump frequency plots. The two
regions are defined as the weak wave breaking region and the strong wave breaking
region, respectively. The regression line in each region was determined using the least
squares method as

K = LO75A™Y as A<003 and

(3.10)
K =2.52A%% as A >003.

In the weak wave breaking region, the stiffness hardening ratio changes very slowly at the
approximate value of 1.05. The stiffness hardening ratio changes rapidly in the strong
wave breaking region. Noticing the relationship between & and x as

=k , (3.11)
the frequency shift ratio may be expreésed as

E=1038A""" a5 A<003 and

(3.12)
& = LS9AME as A>0.03.

3.1.4 Application of the equivalent TMD model derived for rectangular TLDs to the
circular TLD

Because a structure moves in many directions, the circular shape TLID may have
advantages in mitigating vibration over the rectangular one. However, wave motions in
the circular tank are more complex than those in the rectangular one. In practice,
therefore, the circular TLD is often analyzed as an equivalent rectangular TLD, e.g.,
Wakahara (1993). The conversion of a circular TLD into rectangular one is made such
that the fundamental natural frequency and the mass of two TLDs with the same water
depth are equal. To maintain same natural frequencies of the two system, Equations (2.1)
and (2.2) are set equal. The length of the equivalent rectangular TLD, L, is obtained in

terms of the diameter of the circular TLD, D, as
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L=117D. (3.13)

To maintain equal masses of the two systems, the width of the rectangular tank, B, is

obtained by
B=1075L. (3.14)

The matching procedures were applied to the energy dissipation curves obtained
from the shaking table experiments for the circular tank with diameter D = 690 mm and
various water depths. The damping ratios and the stiffness hardening ratios for each
circular tank are tabulated in Table E.3 in Appendix E and plotted in Figure 3.4. From
Equation (3.13) the length of the equivalent rectangular tank is found to be L = 590 mm.
For comparison purposes, the results for rectangular tanks and its best fitted curves are

plotted in the same figure.

In the region of weak wave breaking, ie., A < 0.03, the data points are scattered
from the fitted curve in the plot of stiffness hardening ratio. This discrepancy appears to
reflect the phenomenon of swirling wave motion in the circular tank near the resonance

excitation frequency. The swirling wave motion reduces the energy dissipation capacity.

However, overall, the NSD properties of the circular TLD are similar to those of the
equivalent rectangular TLD. The result justifies the method of analysis of the circular

TLD as an equivalent rectangular one.
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3.2 RCM model - a numerical fluid model

The water sloshing motions were simulated numerically using the random choice
method (RCM) that was proposed by Gardarsson and Yeh (1994). The shallow-water
wave theory is briefly discussed prior to introducing the RCM model  The results of
numerical analyses using the RCM model are presented and compared with the

experimental data.

3.2.1 Shallow-water wave theory

In this section, background information on shallow-water wave theory is briefly

described; the details are presented in Appendix F.

The shallow-water wave theory is based on the depth-averaged equations of mass
and momentum conservation. The derivation of these equations involves the assumptions
that water is an incompressible and inviscid fluid, the water depth is infinitesimally small in
comparison with the characteristic horizontal length scale of the motion, the pressure field
is hydrostatic everywhere, and the horizontal velocity is uniform throughout the depth. If
one dimensional wave propagation is considered, the shallow-water equations of mass and

momentum conservation are respectively,
B+ (uh), =0 (3.15) -

and ,+uu, +gh =0 (3.16)
where all parameters are defined in Figure F.1 in Appendix F.

Free-surface flows like sloshing motion in a tuned liquid damper cannot create a
significant pressure difference in the field so that the effect of water compressibility is
considered to be negligible. While the energy dissipation associated with turbulence can
be important, direct viscous effect on the fluid motion is negligible for the high Reynolds
number flows typical of those in a tuned liquid damper. For the TLD, the water depth is
usually much smaller than the horizontal dimension of the tank, which implies that the

assumptions of the infinitesimal flow depth and hydrostatic pressure field are justified.
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A wave described by the shallow-water wave equations propagates with a speed
independent of its wave length, but dependent on its amplitude: the higher the wave
amplitude, the faster it propagates. In other words, the shallow-water wave theory
represents a non-dispersive and fully nonlinear wave system. The models based on the
non-dispersive, fully-nonlinear shallow-water wave equations are believed capable of
modeling wave-breaking, including the effect of energy dissipation, although the breaking
is not characterized in detail but as a flow-property discontinuity. In fact, it is this
property for which the shallow-water wave theory was adopted to analyze the sloshing
motion in a tuned liquid damper since the focus is on the response under large amplitude

excitation.

3.2.2 Numerical simulation of water sloshing motion using the RCM model

A numerical scheme to solve the shallow-water wave equations using the random
choice method (RCM model) was proposed by Gardarsson and Yeh (1994). The random
choice method is a shock-preserving scheme: the shock is represented by the
discontinuities of water surface elevation and velocity between two adjacent grid points.
This scheme causes no numerical dissipation or dispersion and follows precisely the
mathematical formulation of the shallow-water wave theory. However, it has limitations
in simulating the real fluid sloshing motion. For example, in a real fluid environment, the
breaking wave front is not a discontinuity and the pressure field is not exactly hydrostatic,

especially near the breaking wave front.

A series of numerical simulations as described in Table E.2 in Appendix E.2 were
undertaken using the RCM model. The length of the tank was meshed with 400 grid
points. In order to obtain the steady state responses, each case was run for 80 cycles of
the linear fundamental natural period of the tank, T=1/f, where £, is the linear
fundamental natural frequency of the tank which is calculated using Equation (2.31). As
discussed in Section 2.2.4, the hydrodynamic forces of the TLD were calculated based on

the hydrostatic pressures on the tank end walls using Equation (2.7).
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Figure 3.5 shows the time history responses of the water sloshing for the case of

L=590 mm, /=30 mm and A=20 mm. A comparison of these numerical results with the

experimental ones presented in Figures 2.4 thru Figure 2.6 reveals discrepancies. It
appears that the numerical scheme cannot simulate the higher frequency components
observed in the experimental investigations in a satisfactory manner. However, the overall
shapes of the time history responses are in good agreement with the ones obtained from

the experimental investigations.

Figure 3.6 presents the frequency responses of the water sloshing for the same case.
Several discrepancies are observed in comparing the results from the numerical
simulations with the experimental investigations. One apparent difference is that the
numerical scheme fails to simulate the jump phenomenon observed in the experimental
investigation. The other discrepancies are mostly the result of failure in simulation of the

higher modes of the water sloshing motion as discussed in the time history response plots.

The discrepancies are reduced in the plots of RMS base shear force and the energy
dissipation per cycle. This observation is consistent with the effects of higher modes on
the water sloshing motions discussed in Section 2.2.3. However, considering the
difficulties in simulating the wave breaking, the RCM model predicts the water sloshing
motion with wave breaking with a satisfactory accuracy, particularly, in terms of the

energy dissipation capacity.

As described in Section 3.1.2, the damping and stiffness values of a TLD can be
determined using the energy dissipation matching scheme. This procedure was applied to
the rectangular TLDs described in Table E.2 of Appendix E. The results are plotted in
Figure 3.7 as cross-marks. For comparison purposes, the experimental results (dotted

marks) and its best fitted curve (dashed line) are presented also in the figure.
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Figure 3.5 Sample time history responses of water sloshing motion simulated using the
RCM model for the rectangular tank of L=590mm, 4,=30mm and A=20mm
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Figure 3.6 Sample frequency responses of water sloshing motion simulated using the
RCM model for the rectangular tank of L=590mm, 4 =30mm and A=20mm.
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Figure 3.7 The damping ratio, £, and the stiffness hardening ratio, k, of rectangular

TL.Ds determined from numerical analyses using the RCM model.
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The results from numerical simulations show good agreement with the experimental
results in estimating the damping values of the TLDs in the entire range of excitation
amplitudes. Two results also agree well in estimating the stiffness of the TLDs over the
range of excitation amplitude A<0.03, ie., weak wave breaking region. However, in the
strong wave breaking region, ie., A>0.03, the RCM model under-estimates the stiffness
hardenmng characteristics of the TLD. This result confirms that the RCM model cannot
accurately simulate the wave phenomenon under extremely strong excitation motions. It

is, however, concluded that the RCM model accurately predicts the water sloshing motion

e
}
%

for other breaking wave phenomena.




