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CHAPTER 4

DEVELOPMENT OF TLD DESIGN PROCEDURES

Design guidelines for TLDs based upon the numerical models discussed in Chapter 3
are described. The design guidelines are based upon the effectiveness measure defined as
the reduction in peak structural displacement. Because the guidelines are based upon the
interaction of the TLD with the structural system, this interaction model will be presented

before loading-specific investigations are discussed.

4.1 Interaction of a TLD with a SDOF structure

Because the TLD is attached to a SDOF structure, the dynamic structural responses
to the external forces are based upon its inherent damping and the damping forces
generated by the TLD. In Section 4.1.1, this nonlinearly coupled system is formulated.

Numerical solution schemes for the coupled system in time domain are proposed.

4.1.1 Time history numerical solution schemes

Figure 4.1(a) shows the system of a SDOF structure equipped with a TLD. The
hydrodynamic force generated by water sloshing motion acts as a resisting force (or,
damping force) to the external force. The coupled system is treated as a SDOF system

subjected to the total external force which is sum of the damping force, F, and the external

force, F,. The equation of motion of the coupled system is expressed as

m, +c i, +kx =F +F, (4.1)

where m,, ¢, and k, are mass, damping constant and stiffness constant and x, is structural
displacement, respectively. To determine F, in the equation, the water sloshing motion is

simulated using the RCM model at each time step. The damping forces, ie., the

hydrodynamic forces due to the water sloshing, are calculated from the wave height at the
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(a) TLD as RCM model (b) TLD as NSD Model

iFigure 4.1 A SDOF structure with a TLD

...................................................................................................................

end walls using Equation (2.15). Equation (4.1) is now solved analytically for each time
step as described in Appendix D. The solution procedure is schematically illustrated in

Figure 4.2.

Figure 4.1 (b) shows the equivalent system in which the TLD is characterized by the
NSD model. The coupled system is treated as a traditional 2DOF system. The equation

of motion is written as

0 |ix - X k ~k 0
ny Jia‘ + Cq Cq de o a fral _ 4.2)
0 mllx, ~-C; Cp+tc, X, ~k, k;+k, |lx, F,
in which m, ¢, k and x are the mass, damping constant, stiffness constant and relative

displacement of the structure, respectively. The subscripts d and s indicate the damper

and structure, respectively. The quantities, m,, m,, c, and k, are given constants. The
external forcing function F, is approximated to be a constant at each time step of the
numerical solving procedure. The damping constant ¢, and the stiffness constant &, of the

NSD model are determined by Equations (3.9) and (3.10), respectively.
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Given Function: F,
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EFlgure 4.2 A numerical solution scheme for the responses of a SDOF structure coupied
iwith a TLD. The TLD is simulated using the RCM model.
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Figure 4.3 shows an arbitrary sample time history structural displacement to
illustrate how to determine the excitation amplitude A in Equations (3.9) and (3.10). Each
time the structural displacement curve, x,, crosses the horizontal time axis, the peak

structural displacement, X, 1 max Quring the previous G-1)* half cycle is sought. The

absolute value of x.

J-1,max

is assumed as the excitation amplitude A; in Equations (3.9) and
(3.10) during the next (j ) half cycle to calculate ¢, and &k, The system stiffness and the
damping matrices are reformulated with new values of ¢, and k, at this time step.

Equation (4.2) is then solved using the Runge-Kutta method. The numerical solution

procedure is illustrated in Figure 4.4.

Given Constants: m, m,, k, c,
Given Function: F,
Initial Condition: i=1, x =x =0

STOP
y
¥ n
Get Fe,i ¢ I=l+1 EI;ZD
Eq (4.2)—]
+ Ze10- n
Xs crossing
?
Find A | Cale
m ki& cg

Eqs.(3.10) & (3.11)

Flgure 4.4 A numerical solution scheme for the responses of a SDOF structure coupied

thh a TLD. The TLD is characterized by the NSD model
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4.1.2 Evaluation of the NSD model and the RCM model

It was shown in Figure 3.7 that the RCM model predicts accurately the energy
dissipation capacity of the TLD in the region of weak wave breaking. It was also found,
however, that the RCM model is not capable of predicting the energy dissipation capacity
of the TLD in the strong wave breaking region. This limitation of the RCM model is

verified through case studies in this section.

Consider the SDOF structural systems coupled with a TLD as shown in Figure 4.1.
The properties of the selected systems are described in Table 4.1. In the first two cases,
the tank size and the excitation amplitudes and frequencies fall into the range of the
shaking table experimental investigations. The excitation amplitude for Case 1 was
determined such that it falls into the region of weak wave breaking, ie., A/L less than
0.03. Case 2 is for the same system as Case 1 but was subjected to stronger excitation
which induces strong wave breaking in the TLD, i.e., A/L greater than 0.03. The tank size
and the excitation amplitudes and frequencies for Case 3 fall beyond the range of shaking
table experimental cases in order to evaluate the effectiveness of the NSD model in this

range.

First, dynamic responses of the selected system for Case 1 under various excitation

Table 4.1 Data for case studies

Case Structure TLD Exc.Amp'
ID f:f 4‘5 L h fw ﬂ xﬁ,max
1 0458Hz | 0.7% | 590mm | 30mm | 0.458Hz | 1.0% 50 mm

2 0458Hz | 0.7% | 590mm { 30mm | 0458Hz { 1.0% 100 mm

3 0.180Hz | 0.7 % | 2300mm | 70mm | 0.180Hz | 1.0 % 200 mm

(*1) The magnitude of the harmonic forcing function is adjusted such that the maximum
structural displacement without the TLD becomes these values at steady-state.
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frequencies were obtained by solving Equations (4.1) and (4.2) using the RCM and the
NSD models, respectively. Figure 4.5 presents the time history structural responses for
several excitation frequency ratios, 8 = 0.95, 0.99, 1.00 and 1.10. The results from the
RCM and the NSD analyses at each excitation frequency are plotted together for
comparison. The maximum structural displacements in the entire time duration and at
steady-state are presented in the plots. The results from the two analyses are in close
agreement in terms of both the shape and magnitude of the time history of the structural

displacements.

Figure 4.6 shows the time histories of the damping and the stiffness hardening ratios
of the NSD model for the cases as in Figure 4.5. These two parameters are recalculated at
every zero-crossing time step using Equations (3.9) and (3.10) as explained in the
previous section. It is noted that the values of K for all four excitation frequency cases are
approximately constant at 1.05 regardless of the structural excitation amplitudes. This
behavior occurs because the structural vibration amplitudes for all four frequency cases
fall into the region of weak wave breaking, i.e., A/L < 0.03 in which the values of x

changes slowly as shown in Figure 3.3.

Figure 4.7 presents the comparison of the results from both analyses in terms of the
maximum structural displacements at sweep excitation frequencies. The maximum
structural displacements at steady-state are plotted in Figure 4.7 (a). The two results are
in close agreement. It is observed that the TLD reduces the maximum structural
displacements at steady-state by approximately 70 %, i.e., from 50 mm for the structure
without TLD to approximately 15 mm with TLD. The maximum structural displacements
in the entire time duration are plotted in Figure 4.7 (b). The two results show close

agreement.
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Figure 4.5 Sample time history responses of the SDOF structure coupled with a TLD
(Case 1). The TLD is characterized by the RCM and the NSD models, respectively. The
excitation amplitude is in the region of weak wave breaking.
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Figure 4.6 Sample time histories of the NSD model properties for the TLD for the same

cases as Figure 4.5.
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Figure 4.7 The maximum displacements of the structure coupled with a TLD at sweep
excitation frequencies.
respectively. The excitation amplitude is in the region of weak wave breaking.

The TLD is characterized by the RCM and the NSD models,
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Next, the system for Case 2 was analyzed using two models in the same manner.
The excitation amplitude in this case falls into the strong wave breaking region, ie., A/L >
0.03, near the resonance frequency. As noted previously in Chaper 3, the RCM model
cannot predict the TLD energy dissipation capacity accurately in this excitation range.
The time history responses of the structure for Case 2 are presented in Figure 4.8 for
several excitation frequencies, f§ = 0.95, 0.99, 1.00 and 1.10. The results from both
analyses are plotted together for comparison. The results at excitation frequency ratios
= (.95 and 1.10 are in close agreement. However, at f = 0.99 and 1.00 which are near
resonance frequency, the structural displacement becomes larger and the values of the
parameter A/L fall into the region of strong wave breaking, ie., A/L is greater than 0.03.
In this region, the RCM model has not predicted the behavior of the TLD accurately. The
TLD develops stronger nonlinear behavior than predicted by the RCM model
Consequently, the TLD tuning is farther from the linear natural frequency and the

structural natural frequency; therefore, it demonstrates less effectiveness.

Because the values of the NSD model parameters were derived based on the
empirical results, the validity of the NSD model beyond the experimental range must be
mvestigated. Case 3 was designed for this purpose. The selected structural natural
frequency f, = 0.18 Hz and the length of the TLD L = 2300 mm are outside of the range of
the shaking table experimental cases. The water depth was determined such that the TLD
is tuned to the structural natural frequency. The designated excitation amplitude Xomay =
270 mm was selected such that the steady-state structural motions for all excitation
frequencies fell into the region of weak wave breaking. In this excitation region, the RCM
model predicts the TLD behavior accurately. Numerical analyses were conducted using
two models m the same manner as Case 1 and 2. The results are plotted in Figure 4.9,
The results from the NSD model analyses demonstrate close agreement with those from
the RCM model analyses for all excitation frequency cases. This result implies that the

NSD model is valid for the conditions beyond those used for the derivation. In summary;
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Figure 4.8 Sample time history responses of the SDOF structure coupled with a TLD
(Case 2). The TLD is characterized by the RCM and the NSD models, respectively. The
excitation amplitude near resonance falls into the region of strong wave breaking.
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Figure 49 Sample time history responses of the SDOF structure coupled with a TLD
(Case 3). The TLD is characterized by the RCM and the NSD models, respectively. The
selected system is in the condition beyond the experimental cases.
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® The NSD model and the RCM model predict the TLD performance accurately in the
excitation region of weak wave breaking.

* The RCM model does not adequately capture strong wave breaking.

o The NSD model which has been calibrated from the limited experimental investigation
was shown to be valid for certain conditions which are beyond the limited

experimental cases.

4.2 TLD performance and design procedure for harmonic excitations

In this section, the performance of TLDs coupled with a lightly damped SDOF
structure is investigated for harmonic excitation. A frequency response analysis method
coupled with an iteration procedure to solve the nonlinear system is proposed. The
effectiveness of the TLD is defined as the reduction of the maximum displacement of the
structure. The influence of the TLD nonlinearity on its effectiveness is evaluated. A

simple TLD design procedure incorporating nonlinearity is proposed.

4.2.1 Frequency response analysis

A SDOF structural system equipped with a TLD can be modeled as a two-degree-
of-freedom system by using the NSD model for the TLD as shown in Figure 4.10. The
properties of the NSD model (k;, and ¢,) are functions of the peak amplitude of the
structural motion as described in Equations (3.9) and (3.10). As the structure is subjected
to a harmonic excitation, the peak amplitude of the structural motion becomes a constant
at steady-state. The properties of the NSD model (k, and ¢ ), therefore, become constant
at steady-state. Consequently, the TLD behaves like a linear system at steady-state.

Therefore, the peak displacement of the structure at steady-state can be calculated by

£

1
B T —
"k JRE v

(4.3)

' See Appendix B for detailed soiution procedure
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To normalize Equation (4.3), the peak displacement of the structure without TLD is

introduced

__F_ 1
ko Ja- B+ By

The resonance peak displacement of the structure without TLD can be calculated by

X, (4.6)

WD
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F

 ——— 4.7
k%rff | (4.7}

The normalized peak displacement of the structure is obtained by dividing Equation (4.3)

by (4.7) and expressed as

Is

_ X KNI

(4.8)

“TRE i nr

Because {, and 7y are functions of x,, an iteration procedure is required to solve Equation

(4.8). A simple iteration procedure is illustrated in Figure 4.11. The initial value of x, is

------------------------------------------------

(Given: f,

Xo= x(},wo ]

o Ly by 11, B

Initial x, by Eqn. (4.6}

Xo,01a = Xo,m0

Calculate £, v

+——Using Eqgns. (3.9), (3.12) & (4.5)

Calculate x,

-——-Using Eqgn. (4.3)

Flgurc 4.11 A solution procedure for
ra TLD as the structure is subjected to
‘the NSD model.

................................................

STOP

the frequency responses of a structure coupled with
harmonic excitations. The TLD is characterized by :

...................................................................
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set to the peak displacement of the structure without the TLD calculated using Equation

(4.6). Iteration stops as the calculated x, converges to the assumed X,: in this study, the

convergence criterion of 1.0 % is applied.

The effectiveness of the TLD is measured in terms of reduction in the maximum

peak displacement of the structure due to the TLD as

¥ =1 max(x, ) . (4.9)

4.2.2 TLD tuning - linear tuning and nonlinear tuning

In practice, the size of the tank is selected based upon construction considerations.
The water depth is calculated to tune the TLD to the structure using the linear shallow-
water wave theory. This is referred to as “linear tuning” of the TLD because the linear
fundamental natural frequency of the TLD is tuned to the fundamental natural frequency
of the structure. The linearly tuned water depth for the given size of the tank is calculated
from Equation (2.1):

-£t~ h! iEL ? 4.10)
he—xan P £ - 4.

As discussed in the previous chapters, the real (or nonlinear) natural frequency of the
TLD shifts from the linear natural frequency as a function of the excitation amplitude (See
Equation (3.12)). The “nonlinear tuning” of the TLD is defined as: tuning the nonlinear
fundamental natural frequency of the TLD to the fundamental natural frequency of the

structure. From Equations (2.1) and (3.3), the nonlinear fundamental natural frequency is

__5.,/3?.6., hy
frh [ tanh== . (4.1

expressed as
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I the TLD is characterized by the NSD model, it is assumed that the nonlinear

fundamental natural frequency f, is related to the structural frequency f, by the optimum

tuning ratio, 7, for a TMD" as follows:
fa = Youls 4.12)

Combining Equations (4.11) and (4.12), the nonlinearly tuned water depth for the given
size of the tank can be estimated by:
L AT Yo
=—tanh™| —=-£- 172 | . (4.13)
h = | 22
In this equation, h, is a function of & which is a function of excitation amplitude,

Therefore, an iteration procedure is required to determine the nonlinearly tuned water

depth A,

4.2.3 TLD performance for harmonic excitations

Steady-state responses of a structure equipped with a TLD can be obtained by
solving Equation (4.8} using the proposed iteration solution scheme as described Figure
4.11. For the given structural properties (f, £ and the mass ratio (), the structural
response is a function of L, k, and f. The normalized structural responses also depend on
the excitation amplitude because of the nonlinear characteristics of the TLD. In this
section, performance of various TLDs attached to a lightly damped SDOF structure are

evaluated by comparing sweep frequency responses of the structure for each TLD. The

performance is measured in terms of the effectiveness as described in Equation (4.9).

A structure with natural frequency f, = 0.32 Hz and damping ratio { = 1.0 % was

selected.” The mass ratio u of the TLD to the structural mass is set equal to 1.0 %.

Because the property of the TLD depends on the excitation amplitude as shown in

' See Appendix B.2 for Yopt
*'The property of the selected structure is adopted from the Shin Yokohama Prince Hotel (Wakahara, 1992)
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Equations (3.9) and (3.10), two different excitation amplitudes were employed. The
excitation amplitudes were determined such that the maximum peak accelerations of the
structure with a linearly tuned liquid damper becomes the designated values, ¥, = 20 or 3
milli-g. The corresponding maximum peak displacements for the selected structure can be

calculated as x, , = = . 4.85 or 0.73 cm. By estimating 60 % reduction in the peak

w?

acceleration due to a linearly tuned lquid damper, the maximum peak displacement of the

x
structure without a TLD is estimated as A, =-(1—:s—3—*g)' = 12,13 or 1.82 cm. The

amplitude of the barmonic forcing, F,, was determined such that the maximum peak
displacement A, of the structure without a TLD becomes 12.13 or 1.82 c¢m, respectively,

by using the equation:

Fy= Ak 2010 . (4.14)

Two different sizes of TLDs (L = 171 and 300 mm) were employed for each
excitation amplitude. Three different water depths were selected for each tank such that
each TLD is linearly tuned, nonlincarly tuned or mis-tuned. The linearly tuned water
depth was determined using Equation (4.10). The nonlinearly tuned water depth was
determined using Equation (4.13). The mis-tuned water depth was selected to simulate
the condition of approximately 10 % miscalculation in the water depth from the
nonlinearly tuned value. The characteristics of the selected TLDs and excitation

amplitudes are described in Table 4.2.

The results of the analyses for the frequency responses of the structure for each case
are plotted in Figure 4.12 and 4.13 for each excitation amplitude, respectively. The
plotted quantities are the responses normalized to the maximum response of the structure
without the TLD. The resulting properties and effectiveness of each TLD are tabulated in

Table 4.2. The results are surnmarized as follows:
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¢ The performance of the TLD depends on the excitation amplitude. For example, the

TLD with L = 171 ¢m and h; = 12.4 cm demonstrates an effectiveness level of 60 %
and 70 % at acceleration level ¥, = 20 or 3 milli-g, respectively. In these limited

cases, TL.Ds perform better at a lower excitation amplitude because the TLDs develop

the damping ratios close to the optimum values at the acceleration level ¥, = 3 milli-g.

e

* The performance of the TLD is maximized by nonlinear tuning. For a given size of a

tank, nonlinear tuning is achieved by adjusting the water depth.

‘Table 4.2 Properties and performance of TLDs attached to a structure at resonance.
(f,=032Hz,{ =1.0%, u=1.0%)

TR L
R A R

Data J Resuits
(*1) Tank Linear Tuning Nonlinear Effectiveness
2 L o fais Yiin Type Ca K 14 1’4
(milli-g) | (cm) | (cm) | Hyz (%) (%)
20 171 1124 [ 032 | 1.00 (*1) 15 1 1.04 1 1.02 60
11.6 | o2 15 1 1.04 | 099 63
10.5 (*3) 15 1 1.04 | 094 60
300 { 397 | 032§ 1.00 (*1) 12 1 1.04 1 1.02 65
36.8 (*2) 11 1.04 | 0.99 69
33.0 (*3) 12 | 1.04 | 0.94 63 -
600 | 180 2 | 83 | 1.04] 099 75
3 171 1124 1 032 | 1.00 (*1) 68 { 1.02 | 1.02 70
11.6 (*2) 6.3 | 1.03 ] 0.98 76
10.5 (*3) 7.3 | 1.03 | 0.94 63
300 | 39.7 { 0.32 | 1.00 (*1) 56 | 1.03 | 101 70
36.8 (*2) 5.3 1.03 [ 0.98 74
33.0 (*3) 6.2 | 1.04 ] 093 60 =
Notes: =. Linearly tuned, ie., %, = 1.0
2. Nonlinearly tuned, i.e., ¥y = 0.99
=1, Mis-tuned,ie., ¥y < 0.99
=a. Estimated structural acceleration in milli-g.




B

o=

71

normalized x,

2 o o o 2 o o

w F. Ln = -] [+ ptn
T T ) 1

=
b

o
=

0
0.9 0.92

(a) L=17Icm

084 096 098 1 102 1.04
excitation frequency ratio, B

1.06 1.08 1.1

normalized x, ,
& o o o = o o
[ = [ [=. -3 el Ao
1 T ¥ T 7 |

o
o

ot
L

----- wio TLD
e 1239 T
— — h=36.8cm |
S= .. h=33am

0
0.5 0.92

{b) L=300cm

0.94 0.96 6.98 i 1.02 1.04

excitation frequency ratio, B

1.06 1.08 1.1

Figure 4.12 Frequency responses of the structure coupled with various TLDs. The
natural frequency and the damping ratio of the structure are f=0.32 Hz and {=1.0 %.

The mass ratio, 4=1.0%. The estimated maximum acceleration of the structure with the
TLD, x,,,... 1s approximately 20 milli-g.
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Figure 4.13 Frequency responses of the structure coupled with various TLDs. The
natural frequency and the damping ratio of the structure are f=0.32 Hz and {=1.0 %,
respectively. The mass ratio p=1.0%. The estimated maximum acceleration of the
structure with the TLD x, . is approximately 3 milli-g
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¢ The performance of TLD depends on the tank size. For example, the nonlinearly
tuned TLDs with L = 171 cm and 300 cm demonstrate the effectiveness of 63 % and

69 %, respectively, at the acceleration level %, = 20 milli-g. In this case, the larger

TLD performs better because it develops the damping ratios closer to the optimum

values than the smaller one. However, at the acceleration level X, =3 milli-g, the
performance of both TLDs are at similar levels because their damping values are
similar. Both TLDs demonstrate the higher effectiveness level, ie., ¥ = 76 % and 74
%, respectively, because the damping ratios of both TLDs at this acceleration level are
close to the optimum value.

* The TLDs at acceleration level %, = 20 milli-g develops high damping compared to the

optimum value. To lower the damping value of the TLD, the tank size was increased
to L = 600 cm. This TLD develops the damping ratio 8.3 % which is close to the
optimum value and increases the effectiveness to 75 %.

* The mis-tuned TLDs have lower effectiveness for all cases.

4.2.4. TLD design guide for harmonic excitations

Consider a SDOF structure equipped with a linear mechanical damper. The
normalized peak displacement of the structure x,” as shown in Equation (4.8), is a
function of 1, £, £, % and . The normalized maximum structural displacement x,, " is
defined as the maximum value of x," over sweep excitation frequencies. With given

values of rand £, x, . " is expressed as a function of {,and ¥.

The plots of x,,,. " vs. ¢, of the linear system with various tuning ratios make a

family of design curves as shown in Figure B.2 in Appendix B. In Figure 4.14, the curves

for two values of tuning ratios (¥ = 0.99 and 1.02) are plotted for the cases used in the

previous section, i.e., f=0.32 Hz, {=1.0 % and pu=1.0 %.
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The results from the case studies for the linearly and nonlinearly tuned TLDs with
various sizes in the previous section are shown in this family of curves. The results
described in Table 4.2 for the TLDs at acceleration level X, mar = 20 milli-g are plotted in
Figure 4.14 (a). In particular, the result for the linearly tuned TLD with length L=171
mm, {,; = 15 % and y= 1.02 is identified in Figure 4.14 (a) with the label of L171h12.4.
The normalized maximum structural displacement Xomax 18 0.40 which corresponds to an
effectiveness of the TLD of w = 60 %. This agrees with the value in Table 4.2 which was
obtained from the frequency response analyses. Table 4.2 identifies ;=15 % and y=
0.99 for the nonlinearly tuned TLD with the same size tank. These values are plotted with
a cross-mark with the label of L171h11.6. An effectiveness of 63 % is identified from the
figure, which agrees with the value in Table 4.2. The results from several other cases are
shown in Figure 4.14(a) in the same manner. The nonlinearly tuned TLD with tank length
L = 600 cm develops the values of {; = 8.3 % and Y= 0.99 and the highest effectiveness of
v =175 %. Figure 4.14 (b) contains the plots of the results for the TLDs at excitation

amplitude X, = = 3 milli-g in the same manner as described above. It is observed from

this study that:

* There exists a TLD that performs most effectively under a harmonic excitation at a
particular amplitude of excitation. The optimum parameters for the linear TMD hold

true for the NSD model at steady-state.

* The effectiveness of a TLD at steady-state can be estimated using the design chart

alone without further analysis.

e The nonlinear tuning significantly enhances the performance of the TLD as the

damping ratio of the NSD model approaches the optimum value for the TMD.

Based upon the results of this numerical study, an iteration procedure was developed to
select the most effective TLD for a given excitation amplitude. This design procedure is

illustrated in Figure 4.15.
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Figure 4.14 Maximum structural displacements. Curves are for the structure equipped
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with linearly tuned liquid dampers. Cross-marks are for the structure equipped with

nonlnearly tuned liquid dampers. The damping ratio of the structure, {=1.0 %. The
mass ratio, u=1.0 %.
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4.3 TLD performance and design procedure for white noise excitations

In this section, the behavior of the TLD coupled with a lightly damped SDOF
structure is investigated for white noise excitation. An approximation solution scheme
coupled with spectral analysis for the combined system is developed. The effectiveness is
measured m terms of the reduction of the RMS value of the structural displacement. The
approximation scheme is calibrated using the results from time-history analyses of the

TLD.

4.3.1 Time history analysis

Consider a SDOF structure equipped with a TLD. The system can be modeled as a
two-degree-of-freedom system using the NSD model for the TLD as shown in Figure
4.10. As the structure is subjected to a random forcing with a constant spectral density
(white noise forcing), the equation of motion is written as Equation (4.2) and can be

numerically solved as described in Section 4.1.

Fifty sets of 1200 Normally distributed random numbers with zero mean and unit
variance were generated'. Each set of random numbers were smoothed using a cubic-
spline fitting scheme. Twenty four equally distributed data points between each random
number were added. Setting the time step between each data point equal to Ar=0.02

second, each data set becomes a 600-second white noise random number series.

The generated 50 sets of random number series were imposed as forcing functions
on a SDOF structure equipped with various TLDs. The structure and TLDs which were
employed for the case studies under harmonic excitation in Section 4.2.3 were selected,
ie., f=0.32 Hz, {=1.0 %, u= 1.0 %, linearly or nonlinearly tuned TLDs with L=171 cm
or 300 cm. The magnitudes of the random forcing functions were adjusted by trial and

error such that the estimated maximum peak acceleration of the structure equipped with a

! Refer to the Matlab command “randn”,
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linearly tuned TLD with length L = 171 cm becomes 20 milli-g. One sample set of the

generated random forcing function is plotted in Figure 4.16(a).

The adjusted random forcing functions were applied to the selected structural system
equipped with TLDs. A sample time history of the structural displacements was plotted in
Figure 4.16(b). The corresponding plots for the damping ratio {, and frequency ratio 7y of
the NSD model are shown in Figure 4.17. After 300 seconds, the time histories for the
structural responses and the stiffness and damping coefficients of the NSD model were

recorded. The average results of the 50 loading cases were tabulated in Table 4.3.
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Table 4.3 Responses of a SDOF structure with various TLDs under white noise excitation
obtained from time history analyses.

REV MRV MM

(f,=0.32Hz, { =1.0 %, 4 = 1.0 %, targeted ¥, . =20 milli-g)
L=171 cm L=300 cm
h=124cm | h=11.6cm | h=397cm | h=36.8cm
1) (*2) (*1) (*2)
x, | rms (cm) 1.42 1.39 1.37 1.34
max peak(cm) _ 4.56 4.44 4.44 4.30
average peak {cm) 1.76 1.72 1.70 1.66
max peak factor (&) 321 3.20 3.24 3.22
avg peak factor (¢, ) 1.24 1.24 1.24 1.24
reduction in rms (%) 34 36 36 38
reduction in max (%) 27 29 29 31
X, | rms (cm/s?) - 5.84 5.75 5.64 5.56
max peak{cm/s?) 19.3 18.8 18.7 18.3
average peak (cm/s%) 8.01 4,391 4.3.78 4.3.69
max peak factor (a,,,,) 3.30 3.27 332 | 329
avg peak factor (&, ) 1.38 1.38 1.38 1.39
reduction in rms (%) 34 35 36 37
reduction in max (%) 27 28 29 30
&, | average (%) 10.2 10.1 8.3 8.2
¥y | average 1.02 0.99 1.02 0.98

Notes:  (*1). Linearly tuned
(*2). Nonlinearly tuned
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The maximum and average peak factors were defined as the ratio of the maximum
and average peak responses, respectively, to the RMS (root mean square) response. The
cffectiveness is defined as the percent reduction of the RMS value of the structural
displacement compared to the structure without TLD. In addition, the reductions of
maximum displacement, RMS and maximum acceleration of the structure are presented

for reference. The average values of £ 2 and y of the NSD model during the recorded time

duration for each TLD case were calculated and presented. The following summarize

observations from the Hmited case studies:

* The maximum and average peak factors in the structural displacement were estimated
as 3.2 and 1.25, respectively. These values will be used in the spectral analysis in the
next section.

¢ The nonlinear tuning method developed for harmonic excitation as described in
Equation (4.13) is also valid for white noise excitation, i.e., the tuning ratio of the
NSD model of a nonlinearly tuned TLD approaches the optimal value for the linear
TMD system.

* The damping of the NSD model can be adjusted by tank length.

* The effectiveness of the TLD increases as the £y and ¥ of the NSD model approach the

optimum values for the linear TMD system.

A detailed discussion about the effectiveness of the TLD will be presented in the

next section.

4.3.2 Spectral analysis

The mean square response of a stationary process for a linear system under white

noise excitation is calculated by

oo

2
Elx1=, [|H, ()| do (4.15)

—c
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in which S, is the constant spectral density of the random input forcing and Hi(@) is the

frequency response function of the structure. As described in Appendix C, the root mean
square (RMS) response (displacement, E[1/xi0] Or X, .. .. ) Of the structure without a

TLD is expressed as

The RMS response of the structure equipped with a TLD is normalized to the RMS

response of the structure without TLD. Through the solution procedure described in
Appendix C, the normalized RMS displacement (E’N;f'_ } or X;,m) of the structure is

calculated using the formula

el =T, 4.17)

AR ) ARG -A)
AeAaz + Alz —- A4 A,

where (4.18)

3

A=y A =207 +0y): A =4LLy+1+72(1+ ),

— - — (4.19)
A =20 +{,+w)y);, B, = yi= Ay B =20y

The normalized RMS displacement of the structure, as described in Equation (4.16),

is a function of g, {, £, and 7. The values of {, and ¥ of the NSD model are functions of

the peak structural displacement as seen in Equations (3.9) and (3.12). Because of the
non-deterministic nature of the structural displacement under random vibration, it is

essential to estimate the expected value of the peak structural displacement over a specific
time period.

The maximum peak factor @, is defined as the ratio of the maximum peak
displacement to the RMS displacement of the structure. The average peak factor Q,,, s

defined as the ratio of the average peak displacement to the RMS displacement of the
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structure. The maximum and average peak factors of the structural motion under white
noise excitation are estimated from a series of time history analyses. The expected
maximum and average peak displacements of the structure can be estimated by multiplying
the expected RMS structural displacement by the maximum and average peak factors,

respectively.  The corresponding values of £, and ¥ of the NSD model are determined
using Equations (3.9) and (3.12).

Figure 4.18 illustrates the schematic diagram of the solution procedure for the given

system. Because of the nonlinearity of the TLD, an iterative process is required.

4.3.3 TLD performance under white noise excitation

Sample studies are conducted to evaluate the performance of TLDs interacting with
a lightly damped SDOF structure. "Equation (4.17) is solved using the proposed stochastic
scheme. The convergence criterion for the iteration procedure is set equal to 1.0 %. The

effectiveness of the TLD is assessed in terms of the reduction of the RMS displacement of

the structure.

From 50 sets of sample time history analyses, which were described in Section 4.3.1,
the maximum and average peak factors for the structural displacement were measured as
approximately 3.2 and 1.25, respectively. These estimated peak factors are used in these

sample studies.

The structure and TLDs which were employed for the case studies of time history

analysis in the previous section are used in this investigation, ie., f, = 0.32 Hz, { = 1.0 %,

# = 1.0 % and linearly or nonlinearly tuned TLDs with L = 171 c¢m or 300 cm. In
addition, the same size TLDs but with 10 % under-estimated water depth are investigated.
The spectral density of the excitation force is determined such that the estimated maximum
peak acceleration of the structure, equipped with a linearly tuned TLD, becomes

approximately 20 milli-g. Itis accomplished by the following procedure:
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If it is assumed that the TLD reduces the maximum peak acceleration by

approximately 35 %, the maximum peak acceleration of the structure without a TLD is

estimated by
R, koo :—(—;fio%i = 308 milli - g . (4.20a)
“ (Given: £, {, 1)
Xpms = Xpso [ Initial x,_from Eqn (4.16)
. -
2 ¥ Xmmsold = Xrms

Xpeak = CgpXp, | O, * average peak factor in
displacement

Calculate £, v |—— Eqns (3.9) & (3.12)

y

Calculate x,,,  {— Eqn (4.17)

STOP

Flgure 4.18 A solution procedure for the stochastic responses of a structure coupled with |
:a TLD as the structure is subjected to white noise excitation. The TLD is characterized by

thc NSD model.



85

Dividing this result by the estimated maximum peak factor & e = 3.2, the targeted RMS

acceleration of the structure without a TLD is estimated by

'is 2. wo
= R = Q6 milli - g . (4.20b)

max

xs.mz:‘we

The RMS displacement of the structure without a TLD is approximated by

Xemswo  (9.62)(0.981)
= e - =233 . 4.20
e wo w? (2 7 032)° ¢ ( )

&

Substituting this result into Equation (4.16), the spectral density of the white noise random

forcing is determined as

28, O] s o i 2
Sy = —E = 0281107 ] [N Sec}. (4.204)
% The results of the spectral analyses are tabulated in Table 4.4. In comparing the results

with the time history analysis results, it is observed that the spectral analyses yield

Table 4.4 Responses of a SDOF structure with various TLDs under white noise excitation
obtained from the proposed stochastic analysis.
(f,=032Hz, {=1.0%, 4 =10 %, targeted ¥, ., =20 milli-g)

L=171 cm L=300 cm
h=12.4 | h=11.6 | h=10.5 { h=39.7 | h=36.8 | h=33.0

*1) (*2) (*3) (*1) (*2) (*3)
x, |rms (cm) 1.43 1.40 1.46 1.38 1.35 1.45
average peak (cm) 1.78 1.75 1.82 1.72 1.69 1.81
reduction in ms (%) 39 40 37 41 42 38

£, | average (%) 10.7 10.6 10.8 8.7 8.6 8.8
¥y { average 1.02 0.99 0.94 1.02 0.98 0.94

Notes:  (*1). Linearly tuned
(*2). Nonlinearly tuned
(*3). Mis-tuned (approximately 10 % error in water depth)
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approximately 5 % higher values of the effectiveness of the TLDs. It is assumed that this
error is caused by approximations in estimating parameters for the spectral solution

procedure.

4.3.4 TLD design procedure for white noise excitation

Consider a SDOF structure equipped with a linear TMD system. The normalized

RMS displacement X, e Of the structure, as described in Equation (4.17), is a function of
¢, and 7y for the given values of g and {. Figure 4.19 contains the plots of Xoms VS, &y 0f
the linear TMD system with two values of tuning ratios (Y = 0.99 and 1.02)". The solid
curve is for the case with the damper tuning ratio y of 0.99 which corresponds to the cases
with nonlinearly tuned TLDs in Table 4.4. The dashed curve is for the case with the

damper tuning ratio yof 1.02 which corresponds to the cases with linearly tuned TLDs.

The results of the sample case studies using the spectral analyses are shown in Figure
4.19(a). The results from the time history analyses are presented in Figure 4.19(b). As
discussed previously, the approximate 5 % over-estimation of the TLD effectiveness from
the spectral analysis compared with the time history analysis results is apparent. It is
concluded that the most effective TLD for the system under white noise excitation can be
determined using the spectral analysis procedure coupled with the scarching scheme

described in Figure 4.15.

! See Figure C.2 for the same plots for the system with varions tuning ratios,
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4.4 TLD performance under wind conditions

In this section, the performance of TLDs coupled with a lightly damped SDOF
structure is investigated using the time series analyses as the structure is subjected to wind

pressure loadings. The influence of TLD nonlinearity on its effectiveness is evaluated.

Reed (1983) proposed the ARIMA time series model for wind pressure loadings.

For the windward region, Reed proposed an autoregressive model of order 2 (AR(2)) as
P=¢F ,+¢,P,+a,, (4.21)

where ¢,=1.1450, ¢,=-0.2369 and q, indicates a series of Normally distributed random

shocks. Using the AR(2) model, 50 sets of time series of wind pressure Joadings were

generated. Each series is composed of 30,000 numbers. Setting the sample interval equal

to At = 0.02 second, each data set covers 600-seconds.

To investigate the performance of the TLD under wind conditions, the generated
wind pressure series were imposed on a SDOF structure equipped with a TLD. By
modeling the TLD as the NSD model, the equation of motion of the system is written as
Equation (4.2). The dynamic response of the structure were obtained by numerically

solving the equation as described in Section 4.1.1.

A SDOF structure and TLDs which were employed for the case studies under

harmonic or white noise excitations in the previous sections were selected, i.e., f =032
Hz, { = 1.0 %, pt = 1.0 % and linearly and nonlinearly tuned TLDs with length L = 171

cm and 300 cm, respectively. The data for the case studies are tabulated in Table 4.5.

Because of the nonlinear characteristics of the TLD, the target excitation amplitude
was determined first. In this case study, the behavior of the TLD for the maximum
structural acceleration of 20 milli-g was targeted. The magnitudes of the wind pressure
series were adjusted by trial and error such that the estimated maximum peak acceleration
of the structure equipped with a linearly tuned TLD became approximately targeted 20
milli-g.
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A sample set of the simulated time series for wind pressure is presented in Figure

4.20(a). The corresponding displacements of the structure equipped with a TLD are

presented in Figure 4.20(b). The corresponding plots for the damping ratio £ ; and tuning

ratio Y of the NSD model are shown in Figure 4.21.

Table 4.5 Responses of a SDOF structure with various TLDs as the structure is subjected
towind. (f, =032 Hz, ;= 1.0 %, u = 1.0 %, targeted %, ., =20 milli-g)

L=171 cm L=300 cm
h=12.4cm | h=11.6cm | h=397cm | h=368cm

D *2) 1) (*2)

x, | rms{cm) 2.12 2.08 2.07 2.02

max (cm) 7.01 6.89 6.86 6.72

average peak (cm) 2.17 2.11 2.10 2,03

peak factor 3.30 3.31 3.31 3.31
reduction in rms (%) 26 27 28 29
reduction in max (%) 21 22 22 24

¥, | mms (cm/s) 6.81 6.65 6.54 6.40

max (cm/s”) 21.8 213 21.2 20.6

average peak (cm/s?) 9.20 9.04 8.91 8.76

peak factor 3.21 3.2 3.24 3.22
reduction in rms (%) 34 37 38 40
reduction in max (%) 27 30 29 33

{, | average (%) 10.7 10.6 8.7 8.6

Yy | average 1.02 0.99 1.02 0.98

Notes:  (*1). Linearly tuned

(*2). Nonlinearly tuned
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Figure 4.20 A sample set of the simulated time series for wind pressure using the AR(2)
model and the structural displacement with a TLD under this wind pressure loading. The
properties of the structure and the TLD are: f, = 0.32 Hz; {, = 1.0 %; i = 1.0 %; L = 171

cmy =124 cm.
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It is assumed that the TLD activated fully after 300 seconds. The time histories of
the structural responses and the stiffness and damping coefficients of the NSD model were
recorded. The average results of the 50 loading cases for each system are tabulated in
Table 4.5. The peak factors were defined as in the previous section. To assess the
effectiveness of the TLD, the reduction in the RMS and the maximum values of the
displacement and acceleration of the structure equipped with each TLD were compared to

those of the same structure without the TLD. The average damping ratio {, and tuning

ratio yof the NSD model for each case were estimated.

The results described in Table 4.5 display trends similar to those observed in the time

history analyses of the TLD for white noise excitation. To summarize:

* The nonlinear tuning method developed for harmonic excitation as described in
Equation (4.13) is also valid for AR(2) wind pressure excitation, ie., the tuning ratio
of the NSD model of a nonlinearly tuned TLD approaches the optimal value for the
linear TMD system.

* The damping of the NSD model can be adjusted by tank length.

* The effectiveness of the TLD increases as the average values of ¢, and ¥ of the NSD

model approach the optimum values for the linear TMD system.
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4.5 Behavior of the TLD under earthquake excitation

The performance of TLDs attached to a lightly damped structure subjected to
earthquake ground metion is investigated. Because the NSD model was derived for the
harmonic excitation, validity of the model to an earthquake situation was verified using

shaking table experiments prior to the performance investigation.

4.5.1 Validity of the NSD model for the earthquake condition

The NSD model was derived under the conditions of harmonic excitation with
sweep frequencies. To verify the effectiveness of the model under earthquake motion,

shaking table experiments were conducted.

Consider a SDOF structure equipped with a TLD. As the structure is subjected to
earthquake motion, the TLD reacts to the structural motion. To simulate the behavior of
the TLD for earthquake motion, the TLD must be excited by the structural motions
corresponding to the earthquake. As a SDOF structure is subjected to base excitation, the
equation of motion of the system is written as Equation (A.1) in Appendix A. The

dynamic responses of the structure can be obtained by numerically solving the equation.

Figures 4.22 (a) and (b) show the ground motions for the 1940 El Centro earthquake
obtained from “NCEER Strong-Motion Data Base”. These ground motions were imposed
numerically on an undamped SDOF structure whose natural frequency is f, = 0.5 Hz. The
dynamic responses of the structure were numerically simulated. Because the maximum
allowed displacement of the shaking table is approximately 50 mm, the total structural

displacement, x,, was scaled down such that the maximum absolute value of x, becomes

approximately 40 mm. The scaled shaking table motions were plotted in Figure 4.22 (c).

A TLD with length L = 590 mm and water depth A = 36 mm was mounted on the
shaking table as illustrated in Figure 2.1. Its linear fundamental natural frequency is 0.506
Hz which is approximately the same as that of the selected structure. The table was

excited in the motions shown in Figure 4.22 (c) which were the scaled total displacements
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of the selected structure under the El Centro earthquake. The base shear generated by the
TLD during the entire excitation period was measured with the loadcell and recorded in
Figure 4.23 (a) with a solid curve. The amount of energy dissipation due to the base shear

during each half cycle was calculated and recorded in Figure 4.23 (b) with a solid curve.

The NSD model for the employed TLD was assumed to be subjected to the same
excitatton of the shaking table. The equation of motion for the system is expressed as
Equation (A.1) in Appendix A. The dynamic responses of the NSD model to the base
excitation were obtained numerically. The time history of the base shear generated by the
NSD model is presented in Figure 4.23 (a) with a dashed curve. The amount of energy
dissipation due to the base shear during each half cycle was calculated and recorded in

Figure 4.23 (b) with a dashed curve.

In both plots, it is apparent that the solid curve and the dashed curve are in close
agreement. The result indicates that the NSD model which has been derived from the
shaking table experiments for harmonic excitations predicts accurately the behavior of the
TLD under the El Centro earthquake motion. Figure 4.24 presents the time histories of

the damping ratio and the stiffness hardening ratio of the NSD model during the excitation

period.

4.5.2 Performance of the TLD under earthquake

Numerical simulation was used to investigate the performance of the TLD attached
to a lightly damped SDOF structure subjected to the 1994 Northridge earthquake. The
ground motions of the Northridge earthquake obtained from “NCEER Strong-Motion
Data Base” and shown in Figure 4.25 are obviously different from the El Centro records.

The structure with f, = 0.32 Hz and {, = 1.0 % was selected. The TLD with length L =

171 ¢m and water depth 4, = 11.6 cm was attached to the structure. The mass ratio of the

TLD was setequal to 1 = 1.0 %.
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Figure 4.23 Damping forces and energy dissipation per cycle generated by the TLD with
the length L = 590 mm, water depth 4, = 36 mm and its corresponding NSD model. The

maximum shaking table displacement x,, . was adjusted to approximately 40 mm.
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By modeling the TLD as a NSD model, the equation of motion of the system is
written as in Equation (4.2). The dynamic responses of the structure are obtained by
numerically solving the equation as described in Section 4.1. One 60 second record of the
responses (displacement and acceleration) of the structure with and without a TLD are
plotted together in Figure 4.26. The reduction of the maximum and the RMS responses

during every 20 second intervals are averaged and recorded in the plots.

It appears that the TLD does not play any significant role during the initial period of
ground motion. This is because the structural motion during this stage is not periodic;
consequently, the TLD is not properly tuned to the structural motion. But as time passes,
the structural motion becomes more periodic in nature. The TLD which is tuned to the
structural natural frequency begins to gain effectiveness. During the last 20 second
period, the effectiveness of the TLD increases to approximately 50 % in terms of the RMS
displacement or acceleration. However, because the “impact” of the earthquake in the
initial seconds is crucial to the structural safety, the TLD must be further investigated to
improve its performance for this type of nonstationary motion. Figure 4.27 presents the

time histories of the damping and the tuning ratios of the NSD model during the excitation

period.
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Figure 4.26 Time history responses of the structure with and without a TLD under the
Northridge earthquake. Structure with f,=032Hzand { = 1.0 %; TLD with L = 171
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CHAPTER 5

CONCLUSIONS

The fundamental behavior of shallow water sioshing motion in TLDs was

mvestigated experimentally and numerically. The results reveal the following:

*

Shallow water possesses hardening-spring type nonlinear characteristics. The
nonlinearity is dependent upon the excitation amplitude.
The nonlinearity of the TLD was quantified using the parameter “‘jump-frequency”.

The jump-frequency may be explicitly expressed as a function of nondimensional
_— . A
excitation amplitude, A = T

Regions of weak wave breaking and strong wave breaking were identified. In the
region of strong wave breaking, the nonlinear behavior changes more rapidly.

As the excitation amplitude increases, the frequency range for which the damper is
effective widens. This fact indicates that the TLD performs in a wider frequency
range under strong excitation, i.e., it is a robust energy-dissipating system.

Higher frequency components of the water sloshing motion do not influence
significantly the energy dissipation capacity of the TLD. An approximate analysis
method using only the fundamental mode is valid.

The damping forces due to water sloshing motion can be adequately calculated
based on the hydrostatic pressure assumption at the end walls of the rectangular

tank.

An equivalent TMD of the rectangular TLD (NSD model) was developed based

upon the shaking table experiments. The damping ratio and the stiffness hardening ratio of

the NSD model were explicitly expressed as functions of the parameter (A/L). In the

weak wave breaking region, the stiffness of the NSD model changes only slightly and
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remains approximately constant at a value of 1.05. In the strong wave breaking region,
the stiffness changes rapidly. This phenomenon is consistent with the jump-frequency
investigation.

Although the water sloshing motion in a circular tank is more complex than that in
the rectangular one, preliminary experimental results suggest it may be treated as an

equivalent rectangular tank for design purposes.

A numerical scheme to solve the shallow-water equation using the Random Choice
Method (RCM model) proposed by Gardarsson and Yeh (1994) predicts quite accurately
the water sloshing motion in the region of weak wave breaking, ie. A/L < 0.03.
However, the RCM model cannot simulate accurately the water sloshing with strong wave

breaking that occurs in the excitation range A/L > 0.03.

Based on the observed nonlinearity of the TLD, nonlinear tuning was proposed. The

nonlinearly tuned TLD was shown to perform more effectively than the linearly tuned one.

Numerical solution schemes in the time domain for interaction of the TLD with a
SDOF structure were developed. The behavior of the TLD was simulated using the NSD
and the RCM models, respectively. These solution schemes were employed to evaluate

the TLD performance under various excitation conditions.

Iterative solution procedures for the frequency responses of a SDOF structure
equipped with a TLD were proposed for the structure subjected to harmonic or white
noise excitations. Using the solution schemes, the parameters of the NSD model may be
determined. The effectiveness of the TLD may be estimated using the proposed frequency

response method.

The performance of TLDs attached to lightly damped structures was evaluated using
the proposed numerical solution schemes for the structure under various excitation
conditions (harmonic forcing, white noise forcing, wind or earthquake). The results of

extensive numerical investigations reveal the following:
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* For harmonic or white noise excitations, the optimization of the parameters for the

NSD model follows that of the traditional linear TMD. The nonlinear tuning

enhances the performance of the TLD.

Effectiveness of TLDs was evaluated for a structural system subjected to typical
time-varying wind pressure loadings. The wind pressure loading was simulated using
an AR(2) model proposed by Reed (1983). These preliminary results from the time-
history numerical analyses show that the selected TLDs reduce the RMS structural
accelerations up to 40 %. This result llustrates the viability of the NSD model.
Further investigation of the TLD performance for time series representation of

various wind loadings is warranted.

The effectiveness of the TLD under earthquake conditions was investigated
numerically. Northridge earthquake ground motions were imposed on a lightly
damped SDOF structure equipped with a nonlinearly tuned TLD. The TLD does not
reduce the structural response during the initial stage of the earthquake. This
limitation indicates the inability of this passive system for damping “impact-type”
loadings. The performance of the TLD for earthquake loadings must be further

investigated.
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