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Appendix A. Linear SDOF System

Figure A.1 shows a SDOF system

e X X subjected to a base excitation. The equation of

motion of the system is written as

i
l X + ¢X + k¥ = —m3 (A D)
k =i ¢ where m, k and ¢ indicate the mass, stiffness and
7 . . .
damping coefficients of the damper respectively; x
T
? and X are the absolute and relative displacements
of the damper, respectively; z is the displacement
Figure A.1 SDOF system of the base. In the next section, Equation (A.1) is

solved using the frequency response analysis.

A.1 Frequency response analysis

The frequency response function is a frequency sweep series of the amplitude ratios
and phase angles between the input and output functions which is useful to describe the

dynamic characteristics of a linear system. If the base excitation is a harmonic function of

a constant amplitude z,, and fixed angular frequency @

z=z,e™ (A.2)
then, the steady state response of the system must also be a harmonic function of fixed

amplitude X, and the same frequency o and phase difference ¢, so that
¥ =X, (A.3)

The complex frequency response functions relating ¥ or x to z are respectively

mmE ﬂz
H, = = A4
%o —mot +k+ico  1-pF+i20B A9
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N o 1+i28p
and Hy =1+ Hy = —m=ts ey (A.5)

in which the excitation frequency ratio 3 and the damping ratio of the system ¢ are defined
as f= %; and { = % Nk respectively. The magnitude of H 5 and the phase angle

¢ between x and z are expressed respectively as

1+ (24B)*

H = A. 6

% \/(1—/32)24-(29"[3)2 (A-0)

and ¢ = tan™ 2P’ . (A.7)
1- 8%+ (24B)*

The magnitude of H. %/ is determined by

zZ

ﬁZ
H,|= . (A.8)
l /zl Ja= B + 228y

The frequency response function relating ¥ to the excitation force F L 18 determined by

H. (A.9)

1
X = H X - H 2/
/Fz /nmzz kﬁ ! /z
The dynamic magnification factor (DMF) at the given excitation frequency and the
corresponding amplitude of structural displacement are calculated respectively as

1
CJU= B+ 2B

DMF =2y =k
3

0

1

H, |=—
i

(A 10)

Hy,

E, I

=ta - A 1D
T V1= B +(24B)? (

and

Note that F, is the amplitude of the excitation force, The maximum DMF and the

corresponding amplitude of the structural displacement over the sweep excitation

frequencies are obtained respectively by
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1

DMF_ = —ee (A. 12)
24 1-¢2
Fy (A. 13)

1
and e
xo,max k zé’ r""imgz

Figure A.2 shows the plots of Equation (A.6), (A.7) and (A.10) for the systemns with

various damping values.
A.2 Energy dissipation per cycle by a SDOF damping device

Suppose the SDOF system in Figure A.1 is a damping device which is subjected to a

harmonic base excitation. The damping force F, which is defined as the force resisting

the base excitation is expressed as

F, = —(cx + k%) . (A. 14)

Noting ~(¢X + k¥) = m¥ from Equation (A.1), F, can be calculated by

H_ "% (A. 15)

Fy = —(cX + k%) = mi = —m@’x = -mo’z,

A

£

Dividing by mi, = -mw®z,, the nondimensional amplitude of the damping force F,

becomes

’

F,

B 1+ (2B)°
H%HJ (A. 16)

(=B +Qp)*
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Figure A.2  Frequency responses of SDOF systems with various damping values
calculated using Equations (A.€), (A.7) and (A.10).
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The energy dissipation by the damper E, is defined as the amount of work done by the

damping forces during one cycle of the base excitation and calculated by

E, = J Fdz = dez'd: =-ma’z,’

eyele a

T
H,, j (€Y (ie™ Vdr . (A. 17)
S

Assuming a sine wave input, ie., z=z,Im(e™ )=z, sin(wr), Equation (A.17) is

rewritten as

T
E, =—mo’z,’ H,, [ (sin(ax - ¢) coswndr = ~mo*z," 7 H,|sing . (A. 18)
z 0 z
e I 2o . .
Dividing by ugm(a)zﬁ) , 11 18 written in the nondimensional form as,
E = 27:!11% Sing—2E, =27|F, |sing . (A. 19)

Figure A.3(a) presents the sweep frequency plots of the nondimensional energy
dissipation calculated using Equation (A.19) for dampers with various damping values.
The damper with lower damping ratio shows the higher and narrower energy dissipation
curve. The influence of the damper stiffness on the energy dissipation capacity is
illustrated on Figure A.3(b). The solid line is the frequency sweep plot of the energy
dissipation capacity of a SDOF system with the damping ratio of 6 % and an arbitrary
natural frequency, f,;. The system’s natural frequency is increased by 5% and 10%
respectively by increasing the stiffness of the system by 10.25% and 21% respectively.
The frequency shifting ratio £ is defined as the ratio of the natural frequency of each
system to that of the original system. Hence, £ values of three systemsrshown on the
figure are 1.0, 1.05 and 1.10 respectively. The x-axis of the plot is the ratio of the
excitation frequency to the natural frequency of the original system of which £ = 1.0. As
the natural frequency of the system is increased the energy dissipation curve for the system

shifts toward higher f§ region. The observed trends of the influences of damping and
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stiffness of the system on the energy dissipation capacity is utilized in searching for an

equivalent mechanical model of each TLD.

160 T T T 1 T T Y

ol = - =29 I .
20f — (6% ; ‘\ :
wob " L=10% oy .

0.3 G.85 0.9 0.95 1 1.05 1.1 1.15 1.2
excitation freqeuncy ratio,

(a) with various damping values

Co=6%

S A A T L e :
ORI, 5K " N o

excifation freqeuncy ratio,

: 0
! 0.8 0.85 09 095 1 1.05 1.1 1.15 12
j (b) with various stiffness values

:Figure A.3 Energy dissipation curves for SDOF systems with various damping or various

v
]

i stiffness values. Calculated using Equation (A.19). :
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Appendix B. Linear 2DOF System under Harmonic Excitation”

A SDOF structure with a SDOF

[ Xy mechanical damper is modeled as a simple linear

two degree of freedom system as shown in

Figure B.1. In Section B.1, the frequency

response function of the system is derived. The

steady state responses of undamped or lightly

damped structures under harmonic excitation
force are calculated using the frequency

response function. The well-known optimal

parameters of the TMD attached to an

Figure B.1 SDOF structure with a  undamped or a lightly damped structure are
damper briefly reviewed in Section B.2. The behavior

and performance of the TMDs with various

damping values are illustrated in Section B.3.

For the 2DOF system shown on Figure B.1, the equations of motion are written as
md O x.:d + Cd ""'"Cd .f'd + kd _ka' xd = O ' (B_ 1)
0 mlx, -C; Cz;+c, X, —k; ky+k, || x, E
B.1 Frequency response analysis
As a structure is subjected to a harmonic excitation, the external force and the

steady-state response of the structure can be expressed respectively as

F, = Fe™ and
, (B.2)
x, = x,e %,

" See “List of Symbol” for the definition of the variables which are not defined in this section.
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Introducing the parameters

k /kﬁ, c Cq
CDS = [ » Wy = fei gs - = » g = W{"““;
ms d md 2 k:ms d 2 ka-md

m w Ly w
p=—%, f=—, B, =—_ and 7=“d‘m"§“, (B. 3)
ms ws a)d ws d

the complex frequency response function relating x, to ¥, can be obtained by

1
Hx = Hx = ) 3 (B 4)
© VR k(1B il B upH,)
where the complex frequency response function relating x,, to x, is
2{, 2 2 2 . 3
1vine,8, P - +00B))-i2%.8
H,=H , = T, = > 5 : (B.5)
‘ /x, 1- B, +i20,B, (}/Z—ﬁz) -i-(ZYCdﬁ)
Substituting (B.5) and after some manipulations, Equation (B.4) becomes
H, = I (B. 6)
* k, RE+ilM
where
2{,,2 2 2
YHr® =B +(20,B)
RE=1- 7 - up’ 2( e = 2) and
2
M=20 f+ 1P oD

(v =8 +(2x.B)

The dynamic magnification factor (DMF) and its corresponding peak displacement of the

structure at the given excitation frequency are obtained respectively by

-t and (B. 8)

P JRET +IM?

k
DMF =—*x, =k,
Fy
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F
e 1 (B.9)
k, JRE® + IM?

The normalized peak displacement of the structure at the given excitation frequency is

defined as
. r _ x{} " 2;,-\/1—552 (B 10)
’ 'xi),max VRE2 +IM2 .

where x, . is the maximum peak displacement of the structure without a damper over the

sweep excitation frequencies which is expressed in Equation (A.13).

B.2 Optimum design parameters of the linear mechanical damper

Undamped Structure, { =0: Substituting { =0 into (B.7) and (B.9), the familiar

Den Hartog’s expression (Den Hartog, 1954) is obtained. Following the well-known
procedure utilizing the existence of invariant points on the response curves, we can obtain

the optimum tuning ratio and optimum damping ratio of the damper as follows,

(B. 11}

Lightly Damped Structure, {, >0: For the system with a damped structure, the
invariant points do not exist anymore in the response curves. The optimum parameters of
the damper cannot be obtained using the analytical method as for the undamped case. The
optimum parameters of the damper for the system with a damped structure can be
determined by a numerical search for the minimum peak response, e.g., Warburton (1980)
and Tsai (1993). For the lightly damped structure (£, £0.01) subjected to harmonic

excitation, the optimum parameters of the damper were found to be
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0.23

0.1
damper damping ratio, {,

Figure B.2 Normalized peak displacements of the structure equipped with a TMD for
harmonic excitation: The structural damping ratio, {=1.0 %. The mass ratio, u=1.0 %.

Y o =099

B. 12
£ gom =006 ( )

Figure B.2 containes a 3-D plot of the normalized peak displacements of a structure
equipped with various TMDs for the structural damping ratio {;= 1.0 % and the damper
mass ratio p = 1.0 %. The tuning ratios ¥ vary in the range between 0.9 and 1.1 m the
mcrement of 0.01. The optimum parameters for the damper as defined in Eqguation (B.12)

are evident in this figure,
B.3 Performance of the TMD - Case study

Figure B.3 shows the frequency response plots of a lightly damped structure with

three differently damped TMDs under harmonic external force. The mass ratio 4 of each

TMD is 1%. The structural damping ratio £ is 0.7%.
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For the given system, the optimum parameters were found as in Equation (B.12). In
these analyses, the TMDs are tuned to the fundamental natural frequency of the structure.
The damping ratios of each TMD {, are 2 % (under-damped), 6 % {optimally damped)
and 20 % (over-damped) respectively. The dynamic magnification factor (DMF) of each
system was calculated using Equation (B.8). The figure identifies that the optimally-
damped TMD reduces the peak displacement of the structure most effectively over the

broad range of the excitation frequencies.

Figure B.4 shows the time history performances of each TMD under the free

vibration of the structure with the initial displacement x, = 50 mm. The structural motion

shows a beating phenomenon with the under-damped TMD. In general, as the damping of

the TMD approaches the optimal value, the beating phenomenon weakens and finally

30 H T H ¥ 1 ] kS
u=1%
70+ ;207% .
----- w/o TMD
0F — — {=2% i
(‘;636 %
- =20 %

17
[=]
3

i

Dynamic Magnification Factor
Lad
& 3
T ¥
1} E

0
0.8 .85 05 0.95 1 1.05 11 1.15 1.2
Excitation Frequency Ratio, B

;Figure B.3 Frequency response of lightly damped structures with variously damped
TMDs
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disappears near the optimal value. If the damping of the TMD keeps increasing beyond

the optimal value, the structural motion decays more slowly.

Figure B.5 shows the time history responses of a structure with the same TMDs
under harmonic excitation at excitation frequency ratio 8 of 1.0 and 0.95 respectively.
The amplitude of the external force was selected such that the maximum displacement of

the structure without TMD became 50 mm under the given forcing function. Near the
vicinity of the excitation frequency ratio of unity (ie., the § = 1.0), the under-damped
TMD (&, = 2%) reduces the structural response most effectively. But the under-damped
TMD performs worst at = 0.95. The behavior of the over-damped TMD is opposite to
that of the under-damped TMD. The optimally-damped TMD performs effectively over

the broad range of the excitation frequencies. These observations are consistent with the

plots in Figure B.4.

G 50 100 0 50 100 0 50 100 0 50 100
tsec) {(sec) t(sec) t(zec)

(a) w/o TLD (b) L=2% {c) L~6% {d) L;=20%

Flgure B.4 Time history free vibration responses of lightly damped structures Wﬁh
s variously damped TMDs under harmonic excitation
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o
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G 50 100 0
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...................
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iFigure B.5 Time history forced vibration responses of lightly damped structures with

...............................................................................................
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Appendix C. Linear 2DOF System under White Noise Excitations *

Figure C.1 SDOF structure with a
damper

C.1 Steady state responses

Figure C.1 shows a simple linear two
degree of freedom system subjected to an
external force. If the external force is random
with a constant spectral density (white noise
spectrum), the steady state response of the
stationary process can be obtained. In Section
C.1, the steady state response of the system is
calculated using frequency response analysis
coupled with spectral analysis. The optimal
parameters of the TMD attached to an
undamped or lightly damped structure are

briefly reviewed in Section C.2.

To obtain the steady-state response of the system under a random excitation with a

constant spectral density S, the frequency response functions, H, and H, in Equations

(B.4) and (B.5) are rewritten respectively as

! and (C.1)

* 7 m o) +c,(io) + &, +mH, (io)’

ky+c,(iw) C.2)

*a

Tk, o, Gy m, (o)t

Substituting (C.2} into (C.1) and after some manipulations using (B.3), we obtain

" See “List of Symibol” for the definition of the variables which are not defined in this section.
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g o= B, +B,(i0)+ B, (iw)’ + B, (iw)*

1
% - X . 2 . .3 . w4 (C3)
T m, Ay + A, (0) + A, (i0) + A, (i0)° + A, (i0)

where

A=olel A=2000.+20,0 0,
A, =40 0,0.0,+0" 0, 1+ p);
A =200, +200,(1+1); A =1
B=w/; B=2,0; B=1 B=0.

(C4)

The mean square response of a stationary response process is given by

ae

E{xf]mSOJ‘

e

2
H, (a))] do . (C.5)

Substituting (C.3) into (C.5) and evaluating the integral (Newland, 3" ed., pp.372), the

mean square response is obtained in the form

7S
E|x’]= —2TI(Ay, A, B, +-.B,) | (C.6)

5

AyB T (AgA; — A A+ A A A, (2B,B, ~B,*)
_ —AAA, (B ~2B B+ AB (A A, ~A,A,)

in which I ; > (C.7)
AgA, (AgA," + ACA, - A A2A3 )
Substituting A =1, B,=1 and B,=0, it is simplified as
= AoAi —AA (B ~2B,)+ B, (4 - A,4,) ©8)

A, (AoAa2 "’“"!112 ~AAAy)

Introducing new variables
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&=w;;&=m;, €9
ie.,
A=vh A=200 +L) A =4 Lyl 10
A =2C,+{,(+py); B =y*=A,; B =20y,
Equation (C.8) is simplified as
1
[I=—70H (C.11)
m,&'
= —A-AB'-24)+A (A -4A4)
here, M=—l—%u— e DL 200 C.12
e A0A32 + Azz - A1A2A3 ( :
Equation (C.6) is rewritten as
s
Elx’|=—2_T1 . (C.13)
0 e
Mean square response of the structure without damper can be obtained by
s
E|x ' |= ——ar | C.14
'l e o

Nommalizing (C.13) to (C.14), the nondimensional mean square response of the structure

is written as

=2 T (C.15)

which is a function of &, {, {,and ¥.
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‘9 C.2 Optimum design parameters for the linear mechanical damper

The optimum parameters for the damper can be determined through numerical

searches for the minimum peak response by solving Equation (C.15). An extensive

numerical search for the optimum parameters has been conducted and reported by

R e

Warburton (1982). Figure C.2 shows the plots for the normalized RMS displacement of a
structure equipped with various TMDs as the structural damping ratio { = 1.0 % and the
damper mass ratio 4 = 1.0 %. The tuning ratio ¥ vary in the range between 0.9 and 1.1

with the increment of 0.01. The damper damping ratios ¢ , range from to 0.25. For the

given structure, the optimum parameters were identified from the figure as
Yope = 0.99 and
§ grope = 0.05.

(C.16)

-
/

0.9
0.8
0.7

0.6

normalized RMS struct. disp., x,.,,,,,

0.5 )
1.1

o™ eI

tuning ratio, v y . 02 0.25

09", 0.05 01 ) _
damper damping ratio,

Figure C.2 Normalized RMS displacements of the structure equipped with a TMD for
white noise excitation: The structural damping ratio, {,=1.0%. The mass ratio, H=1.0%.



Appendix D. Time history analysis for a SDOF structure equipped with a TLD

under an arbitrary excitation.

As a SDOF structure equipped with a TLD is subjected to an arbitrary external

force, the equation of motion is written as
mitck+kx=F, +F, D. D

where m, ¢ and k indicate the mass, damping and stiffness coefficients of the structure

respectively; x indicates the relative displacement of the structure: F, is the excitation
forcing function; and F, is the hydrodynamic force induced by water sloshing motion in

the TLD.

In the numerical time history analysis of the structural response to the driving force,
the external force is approximated as a piecewisely constant step function. At each time

step, Equation (D.1) can be rewritten in the form
mx; +cx; +kx; = P . (D.2)
If the displacement and the velocity of the structure at time step 1., are known, ie.,

x,_; and X_; are known, the responses at the time step ¢, can be obtained by solving

Equaton (D.2). The results are as follows:
ety g P,
X, = (AsmwdAt-i-Bcosa)dAr)—}—-}? , (D.3)

& = ~fwe™™ (Asinw A + Beosw,At) + e o, (Acosw ,At - Bsinw A1), (D. 4)
and

B =247 - D’ A+ 20w, B) sinw At +(=2{on , A+ (20 -1o* B) cos® ,Af]
D. 5)

where, { and @ are the damping ratio and the natural angular frequency of the structure

respectively and @, = w/1-{* . Attime step #,_,, substitute At =0 and we obtain
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Xin =B+'§" = B:x,‘_;"ﬁ“ (D. 6) |
k k
. 1. P
and iy =~loB+w,A = A= F(xi'* +{w(x, —7;»)) . D. 7
d

Substituting (D.6) and (D.7) into (D.3), (D.4) and (D5) and noticing ¢t = Af at time step
t;, we obtain displacement, velocity and acceleration at current time step. This numerical

scheme is employed to solve the dynamic equations of motion for the SDOF system with

TLD as the TLD is modeled with a fluid model.
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Appendix E. The Results for the Shaking Table Experimental Investigations.

The data and results of the energy dissipation matching procedure for the
experimental cases of rectangular tanks, which are plotted in Figure 3.3, are tabulated in

Table E.1. Those for numerical simulation using the random choice method, which

Table E.1: The data and results for the rectangular tanks.

Tank Size Water Excitation Amplitude NSD Model
Length Width Depth
L b h, A A/L 4 g X
{(mm) (rmm) (mm) (mm)
590 335 15 10 0.017 0.16 1.02
20 0.034 0.22 1.08
40 0.068 0.23 1.35
590 335 22.5 10 0.017 0.12 1.08
20 0.034 0.15 1.08
40 0.068 0.20 1.32
590 335 30 10 0.017 0.11 1.10
20 0.034 0.15 1.06
40 0.068 0.22 1.25
590 335 45 20 0.034 0.17 1.10
900 335 40 2.5 0.003 0.08 1.00
.5 0.006 0.09 1.10
10 0.011 0.10 1.12
20 0.022 0.15 1.02
20 0.022 0.16 1.02
30 0.033 0.18 1.04
40 0.044 0.20 1.15
900 335 55 20 0.022 0.13 1.08
335 203 15 (125 0.007 0.09 1.02
L0025 0.007 0.07 1.00
5 0.015 0.11 1.02
5 0.015 0.10 1.00
10 0.030 0.15 1.04
10 0.030 0.14 1.04
20 0.060 0.18 1.21
20 0.060 0.17 1.25
30 0.090 0.20 1.32
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correspond to Figure 3.7, are tabulated in Table E.2. Table E.3 summarizes those for

experimental cases of circular tanks, which are plotted in Figure 3.4.

Table E.2. The data and results for the rectangular TLDs obtained from the numerical
stmulation using the RCM model.

Tank Size Water Excitation Amplitude NSD Model
Length Width Depth
L b h, A A/L - K
(mm) (mm) (mm) (mm)
590 335 30 10 0.017 0.11 1.04
20 0.034 0.14 1.10
30 0.051 0.18 1.12
40 0.068 0.21 1.15
900 335 40 10 0.011 0.10 1.02
20 0.022 0.13 1.04
30 0.033 0.16 1.06
40 0.044 0.17 1.08

Table E.3. The data and results for the circular tanks.

Tank Size Water Excitation Amplitude NSD Model
Diameter Depth
D hy A A/L ¢, K
(mm) (mm) (mm)
690 15 10 017 0.14, 1.00
20 034 0.20 1.12
40 068 0.23 1.30
22.5 10 .017 0.13 1.00
20 034 0.19 1.15
40 068 0.23 1.32
690 30 2.5 004 0.06 1.06
.5 008 0.07 1.15
10 017 0.15 1.15
20 034 0.19 1.18
30 051 0.16 1.23
40 068 0.19 1,35
45 .5 008 0.07 1.00
10 017 0.10 1.04
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Appendix F. Shallow-Water Wave Theory

Assuming an inviscid incompressible fluid in a constant gravitational field, the laws

of mass conservation and momentum conservation give
V.g=0 (F.1)
p(g, +q-Vg) =~V (p+pgy) (F.2)

where § =ui +vj +wk is the velocity vector in which 1, j, k are the cartesian unit
vectors along axes x, y and z, respectively, p is the pressure, p is the fluid density and g is

the acceleration of gravity.

Consider the two-dimensional flow as shown on Figure F.1 by assuming that the
velocity field is independent of z-axis (the lateral direction). Equation (F.1)} can be

rewrliten as

+v, =0 (F.3)

...................................................................................................................

L, (wave length)

n I\ ﬁ .

VP L e

gFigure F.1 Geometry of the shallow water wave
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Integration of (F.3) over thé water depth, y = -h, to 1, leads to

d -
J‘_qko (u'x + vy )dy = 'é:; J.’:c udy +[v];’wfha {u]yz.';? Ti.\' - [u]yz-ho h‘O,x = O (F'4}

For a flat horizontal bottom, h,, = 0 and the last term disappears. Now introducing the

kinematic boundary conditions at the bottom and the free surface
v =1, +u1, onthe free surface, y=1€ (F.5)
v=0 on the bottom, y = —h, (F.6)
Equation (F.4) is simplified as

g’; [ udy+7, =0 (E.7)

Noticing the disturbed water depth, s =7 +h, hence A =1, and u is constant over the

water depth, equation (F.7) can be rewritten as the final form

ho+(uh), =0 (F.8)

In hydrostatic pressure field, ie, p,=-pg or, p=pg(n—-y), the momentum

conservation in the horizontal direction from the equation (F.2) becomes
u tuu, Fvu, = —g1n, (F.9)
Again, noticing u, =0 and A, =, the equation (F.9) becomes in the final form
u +ui,+gh, =0 (F.10)

Equations (F.8) and (F.10) are the shallow-water wave equations. The wave motions

based on the shallow-water wave equations are nondispersive and fully nonlinear.
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