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ABSTRACT

The properties of Tuned Liquid Damper are investigated theoretically and
experimentally in this study. Tuned Liquid Damper (TLD) is a kind of passive
mechanical damper which relies on the sloshing of shallow liquid in a rigid tank
for suppressing structural vibrations. Recent growing interest in liquid dampers
is attributable to several potential advantages, including: low costs; easy to install
in existing structures; applicable for temporary use; non-restriction to uni-
directional excitation; and effective even for small-amplitude vibrations.

The author has previously proposed a nonlinear model for a rectangular TLD
under horizontal motion on the basis of the shallow water wave theory. In this
study, the model is improved with emphasis on the damping of liquid sloshing,
which is a significant parameter affecting the effectiveness of TLD. The model is
expanded to accommodate liquid sloshing in a rectangular TLD tank under
pitching motion. Breaking waves which occur in shallow liquid sloshing are
taken into account in the model.

Two types of experiments were carried out in order to study the properties of
the liquid sloshing in TLD as well as to assess the validity of the model proposed.
One is a shaking table experiment, in which the TLD is sinusoidally excited by
horizontal motion or pitching motion. The properties of TLD, such as
nonlinearities and damping, are investigated on the basis of the experimental
results,  Another type of experiment, namely TLD-structure interaction
experiment is, conducted in order to demonstrate the effectiveness of TLD for
suppressing structural vibration. The TLD-structure system used in the
experiment consists of a SDOF structure and a TLD attached. The effects of
parameters of TLD, such as damping of liquid sloshing, on its effectiveness are
also discussed.

The shaking table experiments show that the liquid sloshing is vary nonlinear
and reveals a hardening-spring property when the liquid is shallow. The higher
harmonics whose natural frequencies are approximately odd number times of
the fundamental one, contribute some effects near the primary resonance and
made the liquid sloshing properties more complicated. The proposed model is
assessed by the experimental results; it is shown that the model can predict
surface elevation, base shear force, as well as energy dissipation per cycle of liquid
sloshing with a good accuracy. The TLD-structure interaction experiment shows
that the structural response is reduced significantly by attaching TLD to the
structure, indicating that TLD is very effective. The simulations of TLD-structure
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interaction based on the proposed model agree well with the experimental
results.

The SOLA-VOF code is employed to simulate liquid sloshing in the present of
breaking waves. It is, however, found that the code is not valid for an
engineering application to predict the liquid sloshing with breaking waves. The
proposed model is therefore modified for accounting for breaking waves. Two
coefficients introduced into the basic equations and these are determined from a
systematic shaking table experiment. The empirical formulas are expressed as a
function of the dimensionless amplitude of excitation. With this modified TLD
model, it is show that the response of structure attached with TLD can be
simulated with a satisfactory accuracy even when the breaking waves present in
TLD.

The basic parameters affecting the properties of TLD are discussed; these
parameters in turn are affected by several physical quantities such as TLD tank
size, liquid depth ratio, and liquid viscosity. The discussions on the relations
between TLD basic parameters and those physical quantities may be helpful for
TLD design. The mechanism of TLD is briefly explained based on the
understanding of the mechanism of Tuned Mass Damper (TMD). It is also
shown that the effectiveness of TLD could become comparable with that of TMD
if the damping of liquid sloshing is controlled to a suitable level. The
experimental investigations are also carried out to increase the damping of liquid
sloshing to make TLD more effective. The experimental results show that the
effectiveness of TLD can be improved by employing several means e.g., using
shallow liquid; using high-viscous liquid; and adding floating materials on liquid
surface.,

The multiple TLD's (MTLD), which consists of a number of TLD's with
natural frequencies distributed over certain range around the natural frequency
of the structure, is also investigated by simulation of the MTLD-structure
interaction. It is found that MTLD is very efficient to suppress the structural
vibration even each TLD has small damping. In practice, TLD is designed to
consist of a number of TLD's with the same size to meet required liquid mass.
Multiple TLD's are easy to be designed by varying the liquid depth in each TLD to
have distributed natural frequencies. It is also found that MTLD is insensitive to
the tuning condition. Since the effectiveness of MTLD is very good when the
damping of liquid sloshing is low, the plain water can be used as the liquid of
TLD. MTLD is a valuable concept for TLD design application.

iv
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CHAPTER 1 INTRODUCTION

1.1 TUNED LIQUID DAMPER

Light, flexible, and weakly-damped civil engineering structures, such as tall
buildings, towers and long span bridges, have been increasing in number.
Vibrations of such structures due to wind, earthquake and other dynamic
disturbances can cause problems from serviceability or safety viewpoint. Various
techniques, such as base isolation devices, passive or even active control devices
are proposed to damp the structural vibrations. The installation of a passive
device including mechanical dampers is also one way and becoming common to

suppress undesirable vibrations [Fujino 1990].

Tuned Liquid Damper (TLD) installed on a building and Tower (Size of TLD is not

Figure 1.1
in Scale).

Tuned Liguid
Damper

Building Tower
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This thesis is concerned with a new type of passive mechanical damper,
named Tuned Liquid Damper (TLD) (Fig. 1.1), which relies on the sloshing of
shallow liquid inside a rigid tank, for changing the dynamic characteristics of a
structure and dissipating its vibration energy [Fujino et al. 1988]. Dampers using
liquid sloshing have been in use in space satellites and marine vessels [Bhuta and
Koval 1966, Sayar and Baumgerten 1982, Watanabe 1969]. Recent growing
interest in liquid dampers for application to ground structures [e.g., Modi and
Welt 1987, Fujii et al. 1988, Sakai et al. 1990, and Chaiseri 1989] is attributable to
several potential advantages, including: low cost; easy installation especially in
existing structures which often have severe space constraints; adaptability to
temporary use; almost zero trigger level; non-restriction to wuni-directional

excitation; and few maintenance requirements.

Liquid sloshing in a closed basin have been studied by many researches [e. g.,
Chester 1968, Miles 1976] for applying to the harbor problems in the field of
coastal engineering. Lepellelier [1980] has reviewed the literatures pertaining the
liquid sloshing problem. The liquid sloshing problems were also investigated in
space field [Abramson 1966]; the liquid sloshing in spacecraft and launch vehicles
fuel tanks have been extensively studied. Researches on the sloshing problems
in storage tanks under earthquake have been also done [Sogabe, Shibata 1974].
Compared with the problems mentioned above, the liquid sloshing in TLD has

some special aspects; these are:

(i) The liquid in TLD is shallow in order to attain higher damping and a low
natural frequency to tune to a civil engineering structure. The shallow liquid
leads that the liquid sloshing has very strong nonlinearities so that a linear
theory is not satisfactory for treating the problem.

(i) The damping of liquid sloshing is a significant parameter affecting the
effectiveness of TLD and should be carefully treated.

(iii) Breaking waves may present in liquid sloshing in TLD under large
amplitude base motion. A model which can account for breaking waves has to

be developed.

Modelling of TLD has been studied by several researchers [e.g., Modi 1987, Sato
1987, Noji 1988 and Miyata 1989]. Linear [Sato 1987] and nonlinear TMD Analogy
models [Chaiseri 1990] were proposed. However, because of the strong
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nonlinearities of shallow liquid sloshing in TLD, these models could not give
satisfactory results. Numerical simulations by BEM [Ohyama 1989] can accurately
describe nonlinear liquid sloshing, however, computational time is imperative.

Modi and Welt [1987, 1989] carried out an experimental and analytical study on
the nutation damper (annular tank) which is conceptually the same as TLD, and
they investigated the energy dissipation mechanism of the nutation damper
using a nonlinear potential flow model in conjunction with the boundary layer
correction. Experimental studies on rectangular TLD are also available (e.g.',
Miyata et al. 1988), but an adequate mathematical model for rectangular TLD is

insufficient.

1.2SCOPE OF STUDY

The objectives of this study are to propose models of rectangular TLD and to
investigate the TLD properties experimentally and theoretically. Moreover, the
means increasing effectiveness of TLD are studied.

A nonlinear model of liquid sloshing inside a rectangular TLD, which was
recently developed by the author [Sun. 1988] based on the shallow water wave
theory , is refined with emphasis on damping of liquid sloshing in this thesis.
The model is furthermore extended to deal with the liquid sloshing in TLD
subjected to pitching motion. It will be shown that the models are in good
agreement with the experiment in the region of relatively small vibration
amplitude where breaking waves in TLD do not occur. To account for breaking
waves, the proposed model is modified by introducing two empirically identified

coefficients.

Based on the models of liquid sloshing , the interaction of TLD and structure is
next studied , and the performance of a rectangular TLD attached to a structure
which is subjected to an external harmonic force is discussed. Experiment is also
carried out to confirm the validity of the TLD models as well as the effectiveness

of TLD. The studies on the damping of liquid sloshing are one of the main parts.

Chapter 2 presents the theoretical parts of the study. The linear theory of
liquid sloshing in a rectangular tank is explained and the properties of liquid
sloshing are discussed. A nonlinear model for TLD subjected to horizontal
motion is proposed on the basis of the shallow liquid theory. The damping of
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liquid sloshing is included in the model. Moreover, the model is extended to
simulate the liquid sloshing in TLD subjected to pitching motion. The principle

of SOLA-VOF code which is employed to simulate liquid sloshing with breaking
3 waves is explained.

EO P

Chapter 3 concerns the experimental setups used in the study. The conditions
of experiment cases are described.

The results of experiment and theoretical simulation are presented in Chapter
4. The properties of TLD are discussed on the basis of the experimental results.
The proposed model is verified by comparing with the experiment.

N S

In Chapter 5, several basic parameters affecting the effectiveness of TLD are
discussed.

The experimental investigations on liquid damping, a most
significant parameter of TLD, are presented. Finally in this chapter, an approach

for modifying the TLD model for accounting for breaking waves is proposed and
verified by the experiment.
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Chapter 6 discusses the properties of multiple TLD and the conclusions of the
whole study are presented in Chapter 7.
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CHAPTER 2 THEORETICAL MODELLING OF WAVE SLOSHING IN TLD

2.1 LINEAR WAVE THEORY

Linear theories on wave motions are herein reviewed for the aim to
understand the basic properties of liquid sloshing in TLD, such as natural
frequency, pressure distribution, and dispersion relation, etc..

2.1.1 Linear Shallow Water Wave Theory

Considering a 2-dimensional wave fluid as shown in Fig. 2.1 (x-0-z plane),
liquid depth is k, and z=0 is at the still liquid surface. 7 describes the free surface
elevation, which is a function of location x and time . L and H express wave
length and wave height, respectively. The wave amplitude is assumed to be
infinitesimally small, so that the wave motions can be regarded as linear.

Liquid motion is assumed to be inviscid, irrotational, and iﬁmcompressibie.
The velocity potential @, therefore, exists and is satisfied to Laplace equation, i.e.,

2
Fd D (2.1)

e el

dx2 9z2

Figure 2.1 Definition Sketch for Wave Motion.
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@ is a function of location (x,z) and time t. This equation should be solved under
the boundary conditions. Assuming that velocity potential & can be written in

the form of
Dx,z,t) = X(x) Z(z) e, (2.2)

where w=2af=2x/T is the angular frequency of wave motion, and f and T are
the natural frequency and the natural period of wave motion, respectively.

Introducing Eq.(2.2) into Eq.(2.1), the first term is a function of x only, and 2nd
one is a function of z only, so it can be written as

ML S 3 (2.3)

The solutions to X and Z are assumed to be

X(x) = Aefkx 4 Be-ikx,

Z(z) = Cekz + Deke (2.4a,b)

The coefficients, A, B, C, and D will be determined by the boundary conditions.

The boundary condition at the bottom is \

0z

Substituting Eqs.(2.4b) and (2.5) into Eq.(2.3), one obtains
Z(z) = 2Ce*" cosh(k(z+h)) . (2.6)

On the free surface z = 7{(x,1), there are two kinds of boundary conditions; one is
the dynamical boundary condition

p=po=0 (z=m; Q.7)

and the other is the kinematic boundary condition

Dn _an a7
— I e — = = 2.8
? Dt ot Y (@=m, @8

where p, is the pressure on the free surface. Bernoulli equation expressed as the
potential function @ is given by

A, A S AR A A A
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0P _ Ay PV
= {(m) (az)]+p+gn-—const, (2.9)

=1
ot 2
where p is the density of liquid and g is the gravity acceleration. Note p=p,=0

(Eq(2.7)) at the surface. Since the wave amplitude is small, nonlinear terms can
be omitted. Hence we obtain

:-..,l.( ) = . ) (2-10)

& ot uap 8 at =0
On the other hand, omitting second order term from Eq.(2.8), we have

on 9o (z=0). @.11)

ot  odx

Eliminating 7 from Eqgs.(2.10) and (2.11), the boundary conditions on the free

surface are compiled as

AT S .12)

EXRRE®
Introducing Eqgs.(2.2), (2.4a) and (2.6) into the above equation leads to
w* = gk tanh(kh) . (2.13)
Eq. (2.13) is the dispersion relation, and will be discussed later.
Let 17 take the form of

n= %‘ sin(kx-ot) , (2.14)

Substituting Eqs.(2.2), (2.4a) and (2.6) into Eq.(2.10) and comparing Eq.(2.14) with
Eq.(2.10), the coefficients in Eq.(2.4) can be determined as

B=0
24Cer =81 __1__ 21
2w cosh(kh)
Therefore, the velocity potential, @ can be expressed as
D(x,z,t) = - gH cosh (k(z+h)) os (kx-wt) . (2.16)

20 cosh(kh)

Note that the profile of & along z direction is a function of cosh(k(z+h)).
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With the aids of Egs., (2.9} and (2.16), the pressure distribution is expressed as

_ cosh (k(z+h))
plx.z,t) = - pg (z- osh () m. (2.17)

2.1.2 Linear Natural Frequency of Liquid Sloshing in a Rectangular Tank

The rigid rectangular tank (Fig. 2.2) which has a length 242 and the mean liquid
depth h, is subjected to a horizontal motion xg. The local Cartesian coordinate

system (o-x-z) is attached to the tank, and its origin is placed at the center of the

mean liquid surface.

For the liquid sloshing in # this rectangular tank, the boundary conditions on

side walls are

Uu=—-=0 (x=t1a). (2.18)

Since the walls of tank are vertical, the liquid sloshing in a tank can be regarded
to be the superposition of a progressing wave and its reflection wave, which have
opposite phase and moving in opposite directions. Eqgs.(2.14) gives the solution

as

n = % {sintkx+ot) - sin(lx-wb)}
= H cos(kx) sin{et) .

(2.19)

Figure 2.2 Definition Sketch for Liguid Sloshing in Rectangular Tank Under Horizontal Motion,

Z4
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In the case of TLD subjected to a horizontal base motion, unsymmetrical
sloshing modes are only excited. So under the coordinate system shown in Fig.

2.2, 11 takes the form of

n = H sinlkx) sin(wt) . (2.20)

Corresponding to this, velocity potential @ is rewritten as

f) = gH cosh (k(z+h))

osh(kh) sin(kx) cos{wt) . 2.21)

To satisfy the boundary condition, Eq.(2.18), letting

cos(kx) =0 (x =ta), (2.22)
and
k= Egml« T (m=12,..). (2.23)
(7]

k is wave number, and can be expressed by a wave length L as

2z (2.24)

k=£k
L

i}

Note that the wave length of fundamental sloshing mode is 2 times of the length
of the tank, i.e., L=44.

Eq.(2.13), that is note that the wave length of fundamental sloshing mode is 2
times of the tank,i.e., L=4a.

w? = gk tanh(kh) ,

shows the relation between wave frequency and wave number, which is called
the dispersion relation, indicating that waves with various wave lengths have
different frequencies and travel with different phase velocities.

The natural frequency of liquid sloshing in a rectangular tank is

fo= ;;; ,zj; 271 175g mh(zn Lam) (n=1,2,......), (2.25)

where n denotes the various modes of liquid sloshing. The fundamental natural

frequency (n=1) is

f=%2 =5 '\/ s tanh(liw«) (2.26)
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This formula is employed throughout the thesis for computing the
fundamental natural frequency of liquid sloshing in TLD.

2.1.3 Deep Water Wave, Shallow Water Wave and Long Wave

In previous sub-sections, the properties of shallow water wave which is
sensitive to the liquid depth have been discussed. There are two extreme
situations, i.e., liquid depth I is much larger or much smaller than wave length
L. Usually the former is called arg deep water wave (or surface wave) and the
latter wlong wave (or very shallow water wave). In general, waves in the ranges
of h/L>1/2 and h/L<1/20-1/25 are considered to be deep water wave and fong
wave, respectively (Table 2.1).

Table 2.1 Classification of Waves

h/L 1/20-1/25 1/2
wave type long wave shallow water deep water wave
(very shallow wave (surface wave)
water wave)
control parameters h, H/h H/h,H/L H/L, L

For the deep water wave, the natural frequency in Eq.(2.26) can be simplified as

2ng
= Al 2, 2.27
@ T (2.27)

which is not dependent upon liquid depth, h.

For the long wave, the natural frequency in Eq.(2.26)is simplified as

- 5K = /5 229
Then the wave phase velocity, which is defined as
~0-L 2.29
c=0=r (2.29)
is expressed as
c=c,=+/gh. (2.30)

The wave motion properties are controlled only by the liquid depth h.



A SN S R AR S ke & e b WA

A v

i i TR i

R A B AL

2.2 NONLINEAR MODEL BASED ON SHALLOW WATER THEORY (UNDER
HORIZONTAL MOTION)

2.2.1 Governing Equations

The full equations which govern the liquid motion are the continuity

equation
du Jdw
e = (), 31
8x+az 2.31)

and the two-dimensional Navier-Stokes equations. u = u(x,z,1), w = w(x,zt) are
the velocities of liquid particle (relative to the tank) in the x- and z-direction,
respectively. For liquid having relatively small viscosity, the effect of internal
friction in the fluid is appreciable only in the boundary layer formed near the
solid boundary (Fig. 2.3). From this , the liquid outside the boundary layer may be
considered as potential flow, and the equations of motion become

Ju ou ou _ 19p . <
gu = 197 by <z<m), 2.
Y + u = + w&— » 3 ¥ (-th-hp)<z<n) (2.32)

dw ow Jw 1dp o<
w - w 1P o (hhy <z, 2.33
TR e PEE (-(h-hp) <z 7) (2.33)

where g is the gravity acceleration. Inside the bottom boundary layer, the

equations of motion are

Figure 23  Profile of Liquid Parficle Velocity in x-direction Inside and outside Boundary

Laver.
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Free Surface
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du ou du _ q9p 2
R — EoRp S - - < w1
at+u8x+w§; pax-i-vé;—z— ¥  (h<z<-(h-hy)), (2.34)

%%&;_ =g (h<z<-(hhy), (2.35)

where h;, is the thickness of boundary layer. This thickness is in the order of
several percent of the representative length h in when the liquid in TLD is
shallow (Jonsson 1966). pand v are the density and kinematic viscosity of liquid,

respectively.

The boundary conditions are

u=0 on the end wall (x = * a), (2.36)
w=0 on the bottom (z = - h), (2.37)

w= %?— = %?« +u %«g on the free surface (z = 1), (2.38)
p = po = constant on the free surface (z = 1), (2.39)

where D/Dt denotes material differentiation and n=1(x,) is the free surface

elevation.

2.2.2 Derivations of Basic Equations

The velocity potential function & exists for the flow outside the boundary
layer. Based on the shallow water wave theory (Eq.(2.16)), @ may be assumed as
(Shimizu and Hayama 1987)

& (x,z,)= DP(x,t) coshlk(h+z)). (2.40)

From Eq.(2.40), the vertical velocity w and its differentials can be expressed in
terms of the horizontal velocity u. The equations are integrated with respect to z
from bottom to free surface and the basic equations are obtained as

a1 a(gu(m)
FTRA A @41
9 ) on o*n on
- 1-T% el il oA
57 W + A-T) ulm)=—uln) + g =+ ghog 377 9
*u
— V
= mmn+h 52 dz - X,
-h



e

B B

A S

n s AR

N R A

where o=tanh(kh)/(kh), ¢=tanh(k(h+n))/tanh(kh), T =tanh(k(h+n)), and k is
wave number. #(7) =u(x,n,1) is the horizontal velocity of surface liquid particle.
Eq.(2.41) is the integral of the continuity equation while Eq.(2.42) is obtained from
the equations of motion after eliminating the pressure p. The independent
variables in these basic equations are u(7) and 1. The first term of the right hand
side of Eq.(2.42), which is the integral of the second term of the right hand side of
the equation of motion inside the boundary layer (Eq.(2.34)), is referred to as the
dissipation term. Details are given in Appendix A.

2.2.3 Damping of Liquid Sloshing

The effect of damping on liquid motion is significant near resonance and
hence must be considered carefully in the modelling of the tuned liquid damper.
In the present formulation, assuming that the shear stress outside the boundary
layer is negligibly small, the dissipation term in Eq.(2.42) can be expressed as

~(h-hp)

Y Gl dz=-—1_1g (2.43)
n+h 22 (il p |
-k

where %= pV(ou/0z);-.1, is the bottom shear stress. According to the linear theory
of the boundary layer (Lamb 1932), 7= Y@V u(n)/Y2, and therefore

«{h-hp}

o%*u
Y| dz=-— 1L yGvun). (2.44)
n+h 9z2 (n+h) {2 1
-h
Eq.(2.44) accounts for only the damping effect of bottom boundary layer.
Vandorn (1966) reported that the damping of liquid motion in a tank observed
from his experiment is larger than that computed only on account of the bottom

boundary layer. Miles (1967) also studied the damping of surface wave in‘closed -

basin and suggested that the dissipation term should be multiplied by
(1+(2h/b)+5), where b is the width of the tank, to account also for dissipation due
to side wall friction and liquid surface contamination. It is regarded that the
friction of side wall boundary layer is the same as that of bottom boundary layer;
2hfb is an equivalent coefficient of the damping effect per unit width due to the
side wall boundary layer. S is a "surface contamination" factor which accounts
for damping due to stretching effect in the contaminated liquid surface. This can
be varied theoretically between 0 and 2 (Miles et al. 1967). A value of unity for S

13
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will be used in this study, which corresponds to the establishment of’ "fully

contaminated surface”. Miles et al. (1967) and Lepelletier et al. (1988) also used $
=1.

The dissipation term with the inclusion of the effects of side wall and free

surface is
(hhp)

Yo &dz = - Au(m) (2.45)
n+h 922 - '

-h

where A is evaluated as

= ——-—-—}' 1 )
A T T3 Yov (1+(2h/b)+5)). (2.46)

2.2.4 Base Shear Forces due to Liquid Sloshing

Because the liquid is shallow, the pressure p can be expressed from Eq.(2.17) as

1 (pp) = o (n EOSHKGZHR))
p(PPG) g(n cosh k) z). (2.47)

Integrating Eq.(2.47) with respect to z, the horizontal total pressure P, force acting
on the end wall of the TLD tank can be calculated.

Neglecting the frictions of'side wall and bottom, the base shear force, F = F(t), of

the tank due to liquid motion is

Figure 24  Base Shear Force due to Liquid Motion.

F=Pn+P(}

14



F=P,+Pg. (2.48)

P, and P; are the liquid-induced horizontal force (total pressures) acting on the
right and left end walls of the tank, respectively (Fig. 2.4). These are functions of
liquid free surface elevation at the end walls.

2.2,5 Numerical Solution by Runge-Kutta-Gill Method

The basic equations (Eqs.(2.41) and (2.42)) are discretized with respect to x into
difference equations (staggered mesh) and can be solved numerically. The free
surface waves originally possess a dispersion character. This is replaced by the
dispersion relation, which is produced by the discretization of the basic equations
with proper choice of a suitable division number #. The dimensionless wave
number is taken as #/(2a), since the frequency around the fundamental natural
frequency is of main concern. In this paper, n is calculated using (Shimizu and
Hayama 1987):

n = [ (2arccos(v(tanh(ne)/ Rtanh(ne/2))) (e = h/a). (2.49)

After determining the division number n and with the corresponding boundary

condition

u(m=0 (x=z=a), (2.50)

the difference basic equations are solved using Runge-Kutta-Gill method and
u(1) and 7] can be computed (Appendix A).

2.3 NONLINEAR MODEL BASED ON SHALLOW WATER THEORY (UNDER
PITCHING MOTION)

2.3.1 Inertia Forces in a Rotational Coordination System

As shown in Fig. 2.5, the fixed rectangular coordination is XOZ, and another
rectangular coordination system xoz can rotate around the origin O with angular
deformation 6. The inertia forces under the system xoz are

mi’=m (- g sinf+ 220 + x6* + z0) (2.53)
mi'=m (- g cos6 - 2x6 + z6*- x6) (2.54)

15
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where the 1st term is the effect of gravity; the 2nd term is Coriolis' force; the 3rd

term is centrifugal force, and the 4th term is tangent acceleration force [Koga
1990].

Figure 2.5 Inertia Forces in a Rotational Coordination System

2.3.2 Derivations of Basic Equations

The motion of TLD tank is shown in Fig. 2.6.. The coordination system XOZ is
fixed and the another coordination system xoz moves with TLD tank together..
The motion of TLD tank can be expressed by X,, Z,, and 6. The assumptions in
this section are the same as that in Section 2.2. Therefore, the equations
governing the problem are still the equation of continuity:

Ju Jw
—t =, 2.5
ox * dz (2.55)

Equations of motion (Eui%r's equations):

du ou du  19p
— el NN St <zg 2.56
3Tt W 3 ay (hp<z<h+n), (2.56)

I et - g <z g h+7), .
3 +u 3 + wm—az 3 a (hy<z<h+n) (2.57)

16
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where @y and a; are the inertia forces acting on liquid in TLD, and can be
expressed under the coordination system shown in Fig. 2.6 as

ay=- g sind + 20w + 0z + 8% - X, cos6 - Z, sind (2.58)
a, = - g cos@ - 29u Gx + 6 z + X, 5in@ - Z, coso (2.59)

Figure 2.6 Definition Sketch for Liquid Sloshing in Rectangular Tank Under Pitching Motion.

Note that the components of Xo and Zo are included in 4, and a4, also. Because
the liquid depth considered herein is shallow, i.e., the dimension in x-direction is
much larger than that in z-direction, the accelerations a, and a can be simplified

by neglecting higher order terms. They are rewritten as

~-(g+ Z) sin + 92 X, cosf (2.60)
~-(g+ Z,) cos@ - bx + X, sinf (2.61)

The boundary conditions are:

=0 (x = +a) (2.62)

w=0 (z=0) (2.63)
2 0

w=—£~+u% (z=h+mn (2.64)

17
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p=po=const. (z=h+n) (2.65)

The liquid damping is treated in the same way as discussed in Section 2.3. The
derivations of basic equations are similar to the approach in Section 2.2, and the
details are presented in Appendix C. The basic equations were obtained as

o7 d(gu(n)
“a*? + ho o

=, (2.66)

wu(n) +1--§~u(n) + ((g+z ) cosO - X,sin@ + Qx +
o (2.67)
(g-l-Z )cosehcrqz} )——m~(g+2c,)sine-)'f,,cosé)»?uu(n).

2.3.3 Forces and Moments due to Liquid Sloshing

i e

According to Eq.(2.17), the pressure distribution ofliquid can be expressed as

cosh (kz)
p-po-~paz(h+mn-z). (2.68)

Because the liquid is shallow,

cosh (kz) =~ cosh(kh) = 1.

Figure 2.7 Forces and Moment due to Liquid Sloshing.

=Y
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50, the pressure distribution can be described approximately as

P-po=-pa;(h+n-z), (2.68)
where p, is the pressure on the liquid surface and takes a value of 0.

The forces and moments (Fig. 2.7) due to liquid sloshing are

IS ot Pl P B D

Fy=- %—Pbaz ((h+1)* - (h+1.); (2.69)
F;= f pba(h+n)dx ; (2.70)
M=- é—pbaz ((h+n)* - (h+1.)% -[ pba, (h+n)xdx (2.71)

Note that the moment due to liquid sloshing consists of two parts, namely that
due to the horizontal sloshing force acting on the side walls and that due to
liquid weight acting on the bottom. Since liquid is shallow (h/a <<1), the later is
more significant in the moment. The solutions of the basic equations are given
in details in App. B.

2.4 NUMERICAL SIMULATION BY USE OF SOLA-VOF CODE

2.4.1 Preliminary Remarks

PO G ATE B
DDA

As the development of computers; especially supercomputers with high CPU
speed and large memory, the numerical simulations and numerical experiments

BT sy

on flow are used increasingly. The liquid sloshing without breaking waves were
solved by using FEM and BEM [Nakayama 1981]. Recently, Ohyama [1989]
proposed a BEM approach to treat the wave motion and the induced
hydrodynamic force in TLD.

Viscous liquid sloshing with breaking waves in a rectangular tank is a
important phenomenon in TLD. Numerical simulation method for breaking
waves have been developed by several researchers [Nichols et al. 1980, Miyata
1987]. SOLA-VOF [Nichols et al. 1980] is one of them and has been reported to be
able to treat liquid motion with breaking waves.
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SOLA-VOF is a finite difference method. The fractional Volume Of Fluid
(VOF) method forms the basis of the SOLA-VOF program. The VOF techniques
provides a means of following fluid regions through an Eulerian mesh of
stationary cells. In principle, the VOF method could be used to track any surface
of discontinuity in material properties, in tangential velocity, or any other
property. SOLA-VOF code has a cycle-to-cycle self adjustment technique which
can justify the flow flux automatically even if the continuity equation is not
satisfied enough in time-marching. We try to use this code to treat liquid
sloshing in TLD with breaking wave.

The Outline of SOLA-VOF code is briefly explained. A few test problems have
been computed and the results are presented and discussed in section 4.5. It is
found, however, that the SOLA-VOF code is not valid for an engineering

application.

2.4.2 Qutline of SOLA-VOF Code

SOLA-VOF (Solution Algorithm-Volume of Function) has an Eulerian mesh
of rectangular cells with variable sizes, as shown in Fig. 2.8, éx; for the itk
column and &z; for the jth row. The dependent variables, including the
fractional volume of fluid F variable used in the VOF technique, are located at

cell positions shown in the figure.

Figure 2.8 Location of variables in a typical mesh cell,
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The basis of the SOLA-VOF method is the fractional volume of fluid scheme
for tracking free boundaries. In this technique, a function V(x,y,t) is defined
whose value is unity at any point occupied by fluid and zero elsewhere. The
average value of V'in a cell is equal to the fractional volume of the cell occupied
by fluid. In particular, a unit value of V corresponds to a cell full of fluid, where
as a zero value indicates that the cell contain no fluid. Cells with V values

between zero and one contain a free surface.

The equations to be solved are continuity equation and Navier-Stokes
equations. The volume of fluid function V is used to identify mesh cell that
contain fluid of density p. A free surface cell (i,j) is defined as a cell containing a
nonzero of V and having at least one neighboring cell (i+1,j) or (i,j#1) that
contains a zero value of V. Cells with zero V values are empty of contain

material of density pe.

In the following, the notation (1 stands for the value of Q(x,z,t) at the nét and
at a location (7,j). Half integer subscripts refer to cell boundary locations.

A generic form for the finite-difference approximation of Navier-Stokes

equations is

uify = uly;+ & - (psy - piy) / 8piy + ¥; - FUX - FUZ + VISX] (2.72)

and
wiil = wha+ 8 - (ot - piy / Spzi + g - FWX - FWZ + VISZ]  (2.73)
where
6px,—,,% = % {lp+(p-pIVii18xi1 + [Pt (p-p) Visr 11 8x; (2.74)
and
8pzg.= 2 {lper(p-pIVid Sz + [pet(p-paVigml &z (2.75)

The advective and viscous acceleration terms have an obvious meaning, e.g.,
FUX means that advective flus of u in x-direction, etc..

Velocities computed from Egs.(2.72) and (2.73) must satisfy the continuity

equation. In order to satisfy this equation, the pressures (and velocities) must be
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adjusted in each cell occupied by fluid. Assuming that introduction of velocities
i and @ computed from Eqs.(2.72) into Eq.(2.73) causes a error AS

ou  ow
AS = o + 5 (2.76)

AS is a function of pressure p and should be made to be zero by modifying p:
AS(p+8p) = 0. 2.77)

Make a Tayldr expansion of the above equation and omit the higher order terms,

dp is obtained as

aAS
op =-45/ ("*a*;*) (2.78)

The new estimate for the pressure of cell (i,j) is then
pii+ 8, (2.79)

and new estimates for the velocities locates on the side of the cell are

Wi+ ot op / §px,-+%; (2.80)

ui_%j - (Sf 6p / {?px,_}z_} (2.81)

WijL + ot dp / szﬁ%; (2.82)

w;.1- 6 Op / opz1; (2.83)
"2 7

Briefly, the basic procedure for advancing a solution through one increment in

time, &, consists of three steps:

(1) Semi-implicit approximations of Eq.(2.72) and Eq.(2.73) are used to compute
the first guess for new time-level velocities using the initial conditions or
previous time-level values for all advective pressure, and viscous accelerations.

(2) To satisfy the continuity equation, Eq.(2.31), pressures are iteratively
adjusted in each cell and the velocity changes induced by each pressure change
are added to the velocities computed in step (1}). An iteration is needed because
the change in pressure needed in one cell to satisfy Eq.(2.77) will upset the balance

in the four adjacent cells.
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(3) Finally, the V function defining fluid regions must be updated to give the
mew fluid configuration.

Repetition of these steps will advance a solution through any desired time
interval. At each step, of corse, suitable boundary conditions must be imposed at
all mesh and free-surface boundaries. The details of SOLA-VOF method are

given in Nichols' paper [1980].

2.5 MODIFICATION OF BASIC EQUATIONS FOR BREAKING WAVES

i

In practice, plain water is usually used as‘liquid inlTLD. It gives, however,

il
rather low liquid damping compared with the optimal value. A few Fneans were
reported to increase liquid damping; among those, the utilizing of ‘shallow liquid

e . '
is one of the easy choices. The problem with shallow liquid, however, is the

presence of breaking waves.

The TLD model proposed is not valid for wave breaking situation because of
the assumption of free surface continuity. To account for breaking waves in the
TLD model, the equation of motion (Eq.(10)) was modified by introducing two
coefficients, Cy, and Cyr as follows,

LI (1-Th) “(??Ii%ﬂ%? Ctg %z_ + gho P9 _ Caau(n) - % (2.52)

ot dx2 ox

Those coefficients are unity when breaking waves do not exist. Referring to the
definition of breaking waves in coastal engineering, the critical condition of
Li. 5 st

breaking waves in this study is defined as that wave height is larger than liquid
depth h.

When waves break, more energy will be dissipated on the liquid free surface,
indicating that liquid sloshing has higher damping. Therefore, C;, was
introduced in Eq.(15) to modify the liquid damping, and is called as a damping
coefficient. On the other hand, wave breaking will also change correspondingly
the wave phase velocity. So, Csr was introduced into Eq.(15) to modify the phase
velocity. As the change of wave phase velocity also reflects the shift of the
natural frequency of liquid sloshing, Cp is called as a frequency shift coefficient.

Values of these two empirical coefficients were identified by the sweep
harmonic shaking table experiment as described in Section 5.4.
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2.6 TLD-STRUCTURE INTERACTION

2.6.1 Interaction Model Under Horizontal Motion

TLD-structure interaction model, which consists of a linear single-degree-of-
freedom (SDOF) structure and an attached TLD (Fig. 2.9), can be used to simulate
the response of the structure with attached TLD.

f“igure 29  TD-Stucture Interaction under Horzontal Motion.
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The equation of motion of the structure, which subjects to sinusoidal external
force Fp = Fep sinwt and to TLD base shear force F, can be expressed as

s + 20 & %+ @3 % = - (F + F) (2.84)

where @ =+(ks /m), is the undamped natural frequency of the structure; & is
the structural damping ratio; ms is the mass of structure. TLD base shear force F
is determined by Eq.(2.48). Accordingly, at each time step in the numerical
simulation, x;, 77 and u(7) are computed simultaneously from the three coupled
equations (Egs. 2.41, 2.42 and 2.84),

2.6.2 Interaction Model Under Pitching Motion

The equation of motion for a TLD-structure system under pitching motion
(Fig. 2.10) is expressed as

24
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| where 65 is the rotational displacement of structure and Is is the moment of
inertia to O. M, is external moment. M is the moment acting on structure due to
the liquid motion in TLD (Eq. 2.70). Solving the simultaneous equations of
Eq.(2.86) and governing equation of liquid motion (Eqgs,(2.66) and (2.67)), the
response of the structure with TLD under pitching motion can be obtained.

A AP Sl

Fgure 2.10  TLD-Stucture Interaction under Pitching Motion.
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CHAPTER 3 EXPERIMENTAL APPARATUS AND PROCEDURES

In this study, two types of experiments were carried out, namely, the shaking
table experiment of TLD under horizontal motion or pitching motion; and the
experiment of TLD-structure interaction, in order to assess the validity of the
proposed TLD models and to study the properties of liquid sloshing in TLD as
well as the effectiveness of TLD.

The set-ups and the experimental cases are described in this chapter and the
results of the experiments will be presented and discussed in Chapter 4.

3.1 SHAKING TABLE EXPERIMENT UNDER HORIZONTAL MOTION

3.1.1 Experimental Set-up

A shaking table was employed in the experiment. This can generate a steady
harmonic horizontal motion with a frequency in the range of 0.1-700 Hz and a
amplitude up to 4.0 cm. Both the excitation frequency and the amplitude are

Figure 3.1 The Setup of Shaking Table Experiment (Horizontal Motion).
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adjustable manually. The rectangular TLD tank was excited horizontally by this
shaking table (Fig. 3.1).

A capacitance wave gage was installed at the end wall of the TLD tank to
measure the liquid surface elevation. To measure the base shear force of TLD
tank induced purely by liquid sloshing, two load cells L1 and L2 were used. LI
was installed in the base of TLD to measure the base shear force in which the
inertia force of TLD tank was included. Another load cell L2 was installed in a
dummy mass Mo which is equal to that of TLD tank to measure its inertia force.
The difference between L1 and L2, i. e., the base shear force purely due to liquid
sloshing in TLD, was obtained by a shift amplifier. The displacement of the
shaking table was recorded by a displacement meter.

In the experiment, the TLD was initially quiescent and was excited sinusoidally
with constant amplitude at each excitation frequency. The experimental data
were processed by a NEC micro computer.

3.1.2 Experimental Cases

First, a group of cases were carried out to assess the proposed TLD model and
investigate the characteristics of TLD, such as nonlinearities, etc..

A rectangular tank with length 2a = 59.0 em (measured along the direction of
excitation) and width b = 33.5 cm, being made of 0.5 em thick acrylic plates was

_!iig_;ure 3.2 TLD Tank.
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used (Fig. 3.2). The TLD tank was partially filled with plain water of & = 3.0 em
depth, corresponding to liquid depth ratio € = hfa = 0.1. Water mass my is 5.93

kg. From the linear wave theory, the fundamental natural frequency of liquid
sloshing motion, f,, is

=1 a/Z8 Zhy =0458 H
fw 5 \/Za tanh(za) 0. z,

i.e., the natural period was Ty, = 2.18 sec. For four amplitudes of displacement of
shaking table, A = 0.1 cm, 0.25 ¢m, 0.5 cm, and 1.0 cm, the excitation frequency f
was varied in the range of 0.8 < f/f» < 1.3.

Table 3.1 Shoking table experiment cases for verifying proposed TLD model.
Tank size (cm)
Casename  Length Width Liquid depth Depth ratio Natural Excitation amp

2a (cm) b (cm) h (cm) e=hla freq. fy {Hz) A (cm)
6N1-01 59.0 33.3 3.0 0.1 0.458 0.1
6N1-025 59.0 33.5 3.0 0.1 0458 0.25
i 6N1-05 59.0 33.5 3.0 01 0.458 0.5
§ 6N1-10 59.0 33.5 3.0 0.1 0.458 1.0
: Next, a group of cases was carried out to identified two empirical coefficients
@ for liquid sloshing with breaking waves as described in sub-section 2.2.5. Two
types of TLD tank was used and the excitation amplitude was relatively large and
breaking waves occurred in TLD. The case are shown in Table 3.2.
!
% Table 3.2 Shaking table experiment cases for determining Cy, and Cy
: Tank size (em)
Case name Length Width Liquid depth Natural Excitation amp.
Za (cm) b (cm) ratio e=h/a freq. fy (Hz) A (em)
4N1 39.0 22.0 0.1 0.5656 0.1~4.0
4N2 39.0 22.0 0.2 0.789 0.1~4.0
6N1 b9.0 33.5 01 0.458 0.1~40
6N2 58.0 33.5 0.2 0.639 0.1-4.0

Then the experiments using TLD with various liquid depth were carried out to
investigate the effect of liquid depth ratio (Table 3.3).

Table 3.3  Shaking table experment cases for studying effects of liquid depth ratio.
Tank size (cm)

T

Casename Length  Width Liquid Depth Natural Excitation amp.

i 2a (cm) b (cm) depth b (cm) ratio e=hla freq. f,, (Hz2) A {cm)
6W2A 59.0 335 6.0 0.2 0.639 0.1
6W4A 59.0 33.5 12.0 0.4 0.864 0.1
6W6A 59.0 335 18.0 0.6 0.992 0.1

g 6WBA 59.0 33.5 24.0 0.8 1.064 0.1

3

3
. 28

e



The experiments were also carried out for investigating the damping effects of

liquid sloshing by using high viscous-liquid (Table 3.4), and by adding floating
§ materials on the free surface (Table 3.5).

Table 3.4  Shaking table experiment cases for studying damping effects of liquid
VISCOSsity.

o 0

Tank size {cin)

Casename Length  Width Liquid depth  Viscosity Natural Excitation amp,
{ 2a (em) b (cm) ratio e=hfa  ratio viv, freq. f, (Hz) A (cm)
6V1l 59.0 33.5 0.1 11.2 0.458 0.5
6V30 59.0 33.5 0.1 30.0 0.458 0.5

Table 3.5

Shaking table experiment cases for studying domping effects of floating
materials.

Tank size (cm)
Casename Length Width

Liquid Volume of Natural Excitation amp.
2a (cm b {cm)  depthratio £ materials (cc) freq. £, (Hz) A {em)
6T05 59.0 33.5 0.2 500 0.639 1.0
6T10 59.0 33.5 0.2 1000 0.639 1.0

e e

3.2 SHAKING TABLE EXPERIMENT UNDER PITCHING MOTION

3.2.1 Experimental Set-up

In order to assess the validity of the simulation results, and investigate the

properties of liquid motion in TLD subjected to pitching motion in vertical plane,
the experiments were carried out.

A shaking table which can rotate in vertical plane was designed. This consists

of a beam, a spring and a exciter. As shown in Fig. 3.3, the beam is supported by a
hinge at one end, and is suspended by a spring at the other end, where a exciter is
mounted to generate vertical motion. A function generator was used to generate
a sinusoidal signal, and this was amplified by a power amplifier. Inputing the
amplified signal into the exciter, the moving part of exciter can oscillate
sinusoidally. The oscillation frequency and amplitude can be controlled easily.

;
;
g
i
]
: TLD tank is placed on the beam at the pin point, where the beam is able to rotate
% owing to the vertical motion of the other end of the beam.
i
3
:
:
:

The moving part of the exciter generates the inertia force, which is employed
as the excitation force to excite the beam rotationally. The force can be adjusted by
changing amplitude or mass of the moving part of the exciter. Because the power
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of the exciter is rather low, the natural frequency of the beam was designed to lie

in the range of sweep frequency so that a large enough amplitude can be obtained.

i The natural frequency of the beam was adjusted at about 0.5 Hz in the
: experiment. However, since the damping of the beam was quite low, the

amplitude of the beam was very sensitive to the excitation frequency and the
beating response was observed at some frequencies. As a result, it is quite
difficult to keep the amplitude of the beam constant in full range of the sweep

test. Furthermore, the exciter used in the experiment did not generate purely
sinusoidal motion when the oscillation frequency is lower than 1.0 Hz.

SRR PR

A capacity wave gage was used to measure the free surface elevation near the

wall of TLD tank. The displacement of the beam was measured by a position
: sensor, from which the rotational angle of TLD 6, can be known.

Figure 3.3  Setup of Shaking Table Experiment (Pitching Motion)

wave gage qyp '

beam exciter
G=6osinmt 3 :::: Q
60cm ’ ™
fe gl \g%/position sencor
L 150cm
l"' 't

3.2.2 Experimental Cases

TLD tank used is the same as described in Section 3.1. Water was used as liquid
in TLD, liquid depth kis 3 cm and 4 cm. The depth ratio hfa are 0.10 and 0.13,
corresponding to the natural frequencies are fy=0.458 Hz and 0.527 Hz,
respectively. So the liquid motion can be treated as shallow wave.

During the experiment, the TLD was excited by a sinusoidal pitching motion
with constant amplitude.

The excitation frequency was varied around the
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resonant frequency of liquid sloshing. The excitation amplitudes were 8,=0.1 deg
+ 0.2 deg and 0.3 deg for the case h=3.0 cm and 6p=0.1 deg for the case h=4.0 cm.

For all of the cases, the excitation frequency f varied in the range of 0.8<flfw/1.2.

Pt

(Table 3.6).
Table 3.6  Shaking table experiment cases for verifying the proposed TLD model
(Pitching Motion),
Tank size (cm)
Casename Length ~ Width Liquid depth Depth ratio  Natural Excitation angle
: 2a (cm) b (cm) h (cm) e=hia  freq. f, (Hz) 6 (deg)
R6N1-01 59.0 335 3.0 01 0.458 0.1
R6N1-02 59.0 335 3.0 01 0438 0.2
R6N1-03 59.0 33.5 3.0 0.1 0.458 0.3
R6N2-01 59.0 33.5 4.0 0.133 0.527 0.1

3.3 TLD-STURCTURE INTERACTION EXPERIMENT

3.3.1 Experimental Set-up

et AR

The structure model used in the interaction experiment was a SDOF platform
vibrating horizontally in a shear-type motion (Fig.3.4) and its natural frequency

BB AR U

Figure 3.4 Setup of TLD-structure interaction experiment (Horizontal motion).
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can be adjusted by changing the mass of platform or the stiffniess of springs. The
damping of the platform is controlled by a oil damper. TLD was mounted on the
platform. The external sinusoidal force exerted to the structure was the inertia
force of the moving part of an exciter which was mounted horizontally on the
platform. The external force amplitude was accordingly maintained constant by
keeping constant the amplitude of relative acceleration of the oscillating part to
the platform. Sweep of excitation frequency, f was done and the steady-state
structural response and the liquid surface elevation near the end wall of TLD
tank were measured.

3.3.2 Experimental Cases

Two TLD-structure interaction experiment cases shown in Table 3.7 were
carried out by Chaiseri [1990]. These two cases were referred to compare with
numerical simulations. The structural mass ms is 168 kg, and the natural
frequency of structure, f; is 0.91 Hz (the natural period T, = 1.10 sec). The
damping ratio of the structure model is 0.32% (corresponding to the logarithmic
damping &s of 0.02 The constant amplitude of exciting force for that frequency
range, was selected such that the structure without TLD vibrated at the steady-
state amplitude A, at resonance. A rectangular tank with water was used as TLD.
Water depth h in TLD was determined such that the fundamental natural
frequency of sloshing motion was tuned to the structural natural frequency. The
mass ratio of water to that of the structure is p.

Table 3.7  TLD-structure interaction experiment cases (without breaking waves).

Structure TLD Tank
Casename fs (Hz) 8s Aof{cm) (%) 2a (cm) b (cro) hiem) f, (Hz)
T5251 0.90 0.02 1.0 1.00 25.0 32.0 2.1 0.90
T5321 (.90 0.02 3.0 0.87 32.0 25.0 3.6 0.90

Additional experimental cases were carried out to assess the modified TLD
model accounting for breaking waves. The resonance amplitude of structures in
these cases are relatively large and the breaking waves are expected to occur. The
cases are shown in Table 3.8.

Table 3.8 TLD-shucture interaction experiment cases (with breaking waves).

Structure TLD Tank
Casename fs (Hz) 85 Ao lemy w(%) 2a {cm) b (cm) hi{cm) f, (Hz)
T5405 1.45 0.02 5.0 1.05 39.0 22.0 3.0 1.45
TS410 1.45 0.02 10.0 1.05 39.0 220 3.0 1.45
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CHAPTER 4 PRESENTATIONS AND DISCUSSIONS OF EXPERIMENTAL

AND THEORETICAL RESULTS

4.1 DEFINITIONS OF QUANTITIES FOR PRESENTATIONS

Figure 4.1 shows sample time histories of displacement of shaking table, x;;
liquid free surface elevation at the end wall, n,; and base shear force, F, with
liquid sloshing at steady state in the horizontal shaking table experiment.
Several quantities are defined as follows for the presentations of results.

Figure 4.1

Sample time historles of displacement of shaking table, x,, liquid surface
elevation near the end wall, n, and base shear Force, F (Shaking table

experiment under horizontal motion).
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Dimensionless Maximum and Minimum Liquid Surface Elevation at the End
Wall of TLD Tank. Liquid free surface elevation at the end wall of TLD tank, 17,

equals § at still liquid free surface. During liquid sloshing, 7, has a maximum
value 7,,,, (wave crest) and a minimum value Nmin {Wave trough) in one cycle
(Fig. 4.1). The dimensionless quantities T max @nd ', are defined as

Nmax = Mmax /H; Nmin = Nmin /h, (4¢.1)
where £ is liquid depth.

Dimensionless Amplitude Base Shear Force. Under a sinusoidal excitation,
the base shear force F(t) has the same amplitude F,, either in positive direction
or negative direction (Fig. 4.1). F,, is nondimensionalized by the maximum
inertia force of liquid treated as a solid mass in sinusoidal motion:

F'y = Pm /(mw sz), (42)
where o = 27f, is the angular excitation frequency.

Dimensionless Energy Loss per Cycle. The shaking table inputs energy into the
TLD, and the TLD itself dissipates energy, 4E due to liquid sloshing. When TLD
is at steady state, it means that in each cycle of excitation, the energy input into
the TLD equals the energy dissipation inside the TLD. The energy input into the
TLD, Einpus can be calculated from the base shear force F and the displacement of
shaking table x;, which are both the functions of time. Thus the energy
dissipation per cycle, AE can be calculated as

t+T
AE = Einput =f F(t) dx(t), (4.3)
'

where T is the period of excitation, i.e. 2n/®. From the above equation, we know
that the energy dissipation per cycle depends both on the amplitudes of F and x;
and on the phase difference between them. AE is nondimensionalized as follows,

AE = AE /Cmey (0A)). (4.4)
Note that mw(wA)’/2 is just a reference value to nondimensionalize but not the
energy of liquid sloshing,

Response Amplitude of Structure attached with TLD. In TLD-sturcture
interaction experiment, the response amplitude of structure attached with TLD
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was measured. This quantity is employed for present the results of TLD-structure
interaction, from which one can see the efficiency of TLD.

4.2 TLD SUBJECTED TO HORIZONTAL MOTION

4.2.1 Time Histories

The wave forms of these time histories vary as the excitation frequency or the
base amplitude varies. Unsymmetrical wave form can be observed even under
the harmonic excitation of small amplitude (Fig. 4.1b). At certain excitation
frequencies, two or three waves can be observed in one cycle {e.g., Fig. 4.1c).

Figure 4.2 presents the measured transient time history responses of liquid
surface elevation, 7, and that of base shear force, F, for the input base amplitude
A =025 cm. The wave forms of liquid motion vary as the excitation frequency
changes. At f/fy = 1.001, two waves in one cycle can be observed. This is a
nonlinear effect of the second higher-harmonic of liquid sloshing, which is
excited at an excitation frequency about one third of the natural frequency of
second unsymmetrical mode of liquid sloshing. At f/f,, = 0.951, even the third
higher-harmonic can be observed clearly. For shallow liquid sloshing in a
rectangular tank, the natural frequencies are related as w; =~ 3w}, ®3 = 5oy (wy: the
natural frequencies of nth higher-harmonics) (Eq.(2.25)). Near the fundamental
resonance, quadratic nonlinearity and cubic nonlinearity induce coupling with
the 2nd and the 3rd higher-harmonics, respectively, thereby changing the liquid
sloshing qualitatively (Nayfeh and Mook 1979).

Numerical simulations corresponding to these cases are also shown for
comparison. In numerical simulation, the liquid motion of TLD was assumed to
be quiescent at t=0. The time increment was 1/60 of the excitation period of
shaking table. The computation was carried on until 80 periods where liquid
sloshing was regarded to have reached steady state. Comparing the numerical
simulation with the experimental results, good agreement can be seen. The TLD
model developed here is satisfactory in predicting not only the fundamental
resonance but also the nonlinearity which induces the effects of higher-
harmonics of liquid sloshing.

Figure 4.3 shows some examples of force-displacement diagrams for the base
displacement amplitude of 0.25 c¢m. One can find also in Fig. 4.3 that the
simulation results agree well with those of the experiment.

35



g

M E | :::::@

5| | (T
.,

] I TR
m (sh 03 s2 Qo o

m ::::;:;5::;5::_,:;::?;_;z, 0 _

1 I AL T O L CRTTE Lk b L 186'0="4
g RE] R 0

RPN O, . -

BT AT R o N N R A W, o 0




AR

A R A0

Figure 4.3  The energy dissipation loops (Base amplitude A=0.25 cmy).
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Figure 4.4  (Continued).
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Figure 4.4  (Continued).
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4.2.1 Frequency Responses

In Fig.4.4, the nondimensionalized quantities, 1], , M'min (Surface elevation),
F'y, (maximum base shear force) and AE’ (energy loss in TLD per cycle) are plotted
for the frequency ratio range of 0.9 < f/f,, < 1.3.

All of the cases in the experiment indicate that the liquid motions possess
strong nonlinearity (Fig. 4.4a to d). The fundamental resonant frequency ratio is
greater than 1.00 even for the smallest input amplitude case (A = 0.1 cm). Ata
certain value of frequency ratio larger than 1.00, 1’ and 7, jumps, indicating
that the nonlinearity of liquid sloshing is a "hardening spring" type. As the
input amplitude increases, the resonant frequency becomes larger. The resonant
frequency for the base amplitude of 0.1 ¢m is about 1.1f,, and increases to about
1.25fy for the base amplitude of 1.0 cm. This indicates that the nonlinearity

becomes stronger.

Local peaks of 7y, (and also of F'yy and AE’) at the frequency range less than
the fundamental resonant frequency, can be observed in Fig.4.4a, b and c. These
are due to the appearance of higher harmonics as seen in Figs. 4.1 and 4.2.

For the relatively small amplitude excitation (0.1 c¢m, 0.25 cm, 0.5 cm), the
simulation can predict the experimental results well. For the input amplitude of
1.0 cm, however, the wave height exceeded the liquid depth, & and the existences
of breaking waves were also visually identified (Fig. 4.4d). In this case, the
simulation results do not agree with those of the experiments. The simulation
overestimates 7’',,. and F', although the resonant frequency ratio is well
predicted. It should be noticed in Fig. 4.4d that the simulation underestimates
AE" in the range 1 < f/f, < 1.25. This is probably because the energy dissipation
for the base displacement amplitude of 1.0 c¢m or larger is due not only to
viscosity of liquid but also to breaking waves. All these results indicate that the
TLD model developed here is valid as far as the continuous free surface
condition is satisfied. In further increases of the base amplitude, A (>1.0 cm),
N 'max » M'max F'm and AE’ did not show clear resonance peaks and became very

flat over a wide range of f/f,, (Sun, et al. 1989).

In practice, the vibration amplitudes of structure may be in a range where
breaking waves in TLD occur. To make the TLD model valid even in wave
breaking condition, the model is modified. The modified mode! is found to be
able to explain the experimental results well [Sun et al. 1990]. The details are
given in Sections 2.4 and 5.4.
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4.3 TLD SUBJECTED TO PITCHING MOTION

4.3.1 Time Histories

As a sample, the time histories of wave surface elevation near the end wall of
the TLD tank are shown in Fig. 4.5 for the case R6N1-01 (Table 3.6) (h=3.0cm,
6o=0.1 deg). The wave motion is almost linear at the range of low frequency
(flfw=0.85), and than becomes unsymmetrical about the still water level surface as
the increasing of the wave amplitude. The higher harmonic waves, i.e., more
than 2 peaks in one cycle of excitation can be observed. At flf=1.10, the wave
amplitude jumps down, and then the wave sloshing becomes linear. The other
cases in Table 3.6 also demonstrate the same trend. These phenomena are
similar to those in the experiment of TLD subjected to horizontal motion, and
indicate that the nonlinearities of shallow liquid sloshing is strong.

4.3.2 Frequency Response

The experiment results of the frequency response of 7'y, and 7', as defined
in Section 4.1 are shown in Fig. 4.6. The numerical simulations were also carried
out corresponding to the experimental cases. In the computation, the TLD was
excited from rest, and the computation continued until 120 periods of excitation,
where the response of liquid motion was regarded to be steady state. The values
Of 7' max and 0’ min are calculated by taking average value in last 20 cycles. The
excitation frequency swept within the range of 0.8 < f/f; <1.2 with a interval of

0.005.

From Fig. 4.6, it is found again that the nonlinearities of liquid sloshing are
similar to those in TLD subjected to horizontal motion. The results of the case
R6N1-01 (Fig. 4.6a) shows a good agreement between the experiment and
simulation. However, for the cases R6N1-02 (Fig. 4.6b) and R6N1-03 (Fig. 4.6c),
the simulation values are larger than the experimental ones. This may be due to
the underestimated damping of liquid sloshing in the simulation. For the case of
R6N1-04, the agreement around the resonance was not so satisfactory. This
disagreement may due to that the experimental equipment could not generate
purely sinusoidal motion as described in the sub-section 3.2.1. Several examples
of time histories of the base displacement 6 for the case R6N2-01 are shown in
Fig. 4.7. 1t can be observed that the motion are not sinusoidal.
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