CHAPTER 6 CHARACTERISTICS OF MULTIPLE TLD'S

6.1 MULTIPLE TLD'S AND ITS SIMULATION MODEL

In previous chapters, the frequency response of structure with single TLD was
discussed. It has been found that the effectiveness of single TLD is affected
significantly by the damping of liquid sloshing. Usually, plain water is used as
the liquid in TLD, which possesses relatively low damping. A low damping TLD
may not satisfactorily suppress the structural vibrations, so the means to Increase
damping of liquid sloshing in TLD to the optimal level were studied in Section
5.3. However, it is difficult to maintain the damping of liquid sloshing as the
optimal value at any amplitudes of excitation since the damping of liquid
sloshing is nonlinear. Moreover, it is difficult to quantitatively evaluate the
additional damping, for instance, the damping due to floating surface materials.

Single TLD effectiveness is also sensitive to the tuning condition, i.e., the
natural frequency of TLD has to be tuned to that of the structure. The mis-tuning
may happen when the structural natural frequency used for design is different
from that of the actual structure. Even though tuning is made, this may not hold
when wave amplitude of sloshing in TLD is large, resulting in the shift of the
natural frequency of TLD due to its nonlinearities. The effectiveness of TLD may
become poor under such cases.

Recently, multiple TMD's (MTMD), which consists of a number of small
TMD's whose natural frequencies are distributed over a certain range around the
natural frequency of the structure (Fig. 6.1). This was proposed by Igusa [1991].
The effectiveness and the sensitivity of MTMD were investigated analytically by
Yamaguchi and Harnpornchai [1991} in details. These studies reported that the
MTMD are very effectiveness even when the damping of each individual TMD
in MTMD is lower than the optimal value of single TMD; a MTMD is more
effective than a single TMD when mis-tuning, indicating that the sensitivity of
MTMD to the tuning condition is weakened.

With the same concept, the characteristics of multiple TLD's (MTLD) are
studied in this chapter on the basis of the simulation of MTLD-structure
interaction. In practice, single TLD consists of a number of tanks with same size
and same liquid depth to meet required liquid mass in total. By changing the



Ry

G e

T AR i

liquid depth in each TLD tank, it is very easy to have a number of TLD's, i.e.,
MTLD, whose natural frequencies are distributed over certain range (Fig. 6.2).

Figure 6.1 Igusa’s multiple TMD (MTMD).
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Figure 6.2 The muitiple TLD (MTLD).
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By using the TLD model proposed, the MTLD-structure interaction were
simulated. At each time step, the base shear force of each TLD under the
excitation of structure was calculated and the total force due to the TLD's was
obtained. Then the structural response at the next time step under this total force
was computed. The computation was continued until the structural response

became a steady state.

Figure 6.3 Frequency distribution of MTLD.
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In Tgusa's paper [1991], he assumed that the MTMD have equal frequency
spacing, equal damping and equal mass. In this study, the MTLD with equal
frequency spacing was used. However, since the TLD tanks with same size were
used usually in practice, each individual TLD in MTLD had slightly different
damping or mass owing to the variation of the liquid depth. The simulations
were carried out with the aim of studying the effects of TLD on its characteristics
by several parameters, such as: TLD number, N and the frequency distribution
range, AR (Section 6.2), mis-tuning factor, Ay (Section 6.3), and the center liquid
depth ratio g, (Section 6.4). In the simulation, a number of tanks with same size
(2a=59.0cm, b=33.5¢m) were used. The liquid depth for each individual TLD was
varied to make MTLD have equal frequency spacing, §, so the mass and the
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damping for each individual TLD were slightly different. The mass ratio i, ie,
the ratio of the total mass of MTLD to that of the structure, is 1%. As shown in
Fig.6.3, the frequency distributions of MTLD can be described by two quantities:
the center frequency of MTLD, fo and the frequency distribution range, AR of
MTLD. f, and 4R are expressed as

fo= %ﬂ 6.1
AR = fh;-fl- (6.2)

where f; and fy are the lowest and the highest natural frequency of individual
TLD, respectively. For studying the sensitivity of MTLD at the mis-tuning
condition, the mis-tuning factor, Ayis defined as

ay=Lete (6.3)
fo

where, f; is the natural frequency of structure. The SDOF structure with a
structural damping ratio of &=0.32% was excited sinusoidally by a external force
with constant amplitude. For simplicity, a small external force was used in the
studies mentioned above (Sections 6.2-6.4). This force made that the structural
amplitude without damper is 0.1cm at the resonance. So the liquid sloshing in
TLD's was considered to be linear under such a small base amplitude.

In addition, the effects of the nonlinearities of MTLD due to the large
amplitude excitation were also studied in Section 6.5.

6.2 EFFECTS OF NUMBER AND FREQUENCY DISTRIBUTION RANGE OF
MTLD

The simulations were done with various number of TLD's (Table 6.1) and the
results are shown in Fig. 6.4. The central frequency f, is 0.458 Hz, corresponding
to a liquid depth hy=3.0 cm. The frequency distribution range AR is 0.2, i.e., the
MTLD's are distributed in the frequency range of 0.90<fi/f,<1.10. The structural
frequency f; is 0.458Hz and the resonance amplitude A without damper is 0.1cm.
So the wave amplitude is small and the wave motion is regarded to be linear.
For comparison, the structural response with single TLD (STLD) is also plotted in
Fig. 6.4. Both MTLD and STLD have the mass ratio y=1%,
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Table 6.1 Simulation cases for effects of number of TLD's,

Case name N AR f(Hz) f(Hz) A (cm)
ADIRONO1 1 - 0.458 0.458 0.1
ADIR2NO5 5 0.2 0.458 0.458 4.1
ADIRZN11 11 0.2 0.458 (.458 0.1
AQTR2N21 21 0.2 .458 0.458 0.1
ADIR2N31 31 0.2 0.453 {.458 0.1
Table 6.2  Simulation cases for effects of frequency ratio range of TLD's.
Case name N AR f.{Hz) f(Hz) A (cm)
AOTRONO1 1 - 0.458 0.458 0.1
AOTRINOS 5 0.1 (0.458 (0.458 0.1
AOIR2NOS 5 0.2 0.458 0.458 0.1
AQGIR4NO5 5 04 0.458 0.458 0.1
ACIRIN21 21 0.1 0.458 0.458 0.1
ADIR2N21 21 0.2 0.458 0.458 0.1
AQIR4N21 21 04 0.458 0.458 0.1

From Eq.(5.11), we know that the damping of STLD used herein is about 2%.
This value is lower than the optimal one, (=6% in the case of the mass ratio
H=1%). The structural response with the low damping STLD has two peaks
around the frequency ratio f/f;, 0.95 and 1.05. When using MTLD, the maximum
response of the structure becomes lower and the curve shape varies from 2 peaks
type (STLD) to 1 peak type (MTLD). 1t is found that MTLD is more effective than
STLD even they have same mass ratio.

Figure 6.4  Effects of number of TLD's.
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When using 5 TLD's, the response curve has several local peaks. The curve
becomes smooth when increasing the TLD number N to 11, also, the maximum
response is reduced slightly. Then increasing N to 21 or even 31, the response
curve does not change so much. The effectiveness of MTLD is not sensitive to
the TLD numbers N. A MTLD with N=5-11 have good effectiveness. So the most
of simulation cases in later sections used N=5.

Figure 6.5  Effects of frequency distribution range of MTLD.
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Figure 6.5 shows the effects of the frequency distribution range, AR of MTLD.
The simulation cases are as described in table 6.2, The structural responses with 3
types of MTLD, i.e., AR=0.1 (0.95<f/fo<1.05), AR=0.2 (0.90<f;/f,<1.05); and AR=0.4
((0.80<fiffo<1.20) are computed. The number of TLD, N is 21. The results show
that MTLD with AR=0.1 mostly reduced the maximum structural response as
compared with that attached STLD. When MTLD with AR=0.4 used, the
maximum response located near the f/f;=1.00 becomes larger even than that with
STLD. The frequency distribution of MTLD has an optimal range to make the
structural response minimum. Compared with the results shown in Fig. 6.4, it is
found that the effectiveness of MTLD is more sensitive to the frequency
distribution range AR than to the number N.
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6.3 EFFECTIVENESS OF MIS-TUNING MTLD

In this section, the effectiveness of MTLD mis-tuning to a structure is
discussed. TLD has to be designed to tune to the frequency of a target structure.
However, the mis-tuning may happened sometimes. The mis-tuning factor, Ay
is defined by Eq. (6.3). The condition used in the simulation are the same as that
in Section 6.2 except the structural frequency f; (Table 3.5). Fig. 6.6a shows the
structural responses with tuning STLD and mis-tuning STLD, i.e., fs=fo, fs=0.95f,
(Ay=-5.0%) and fe=1.05f, (Ay=5.0%). It can be seen that the maximum structural
response become larger due to the mis-tuning compared with the tuning case.

Table 6,3  Simulation cases for effects of mis-tuning of MTLD,

Case name N AR fo(Hz) f(Hz) Ay A {cm)
AQIRONO1T 1 - 0.458 - 0.458 tuning 0.1
AQ1RONO01.53 1 - 0.458 0.435 «5.0% 0.1
AQIRONO1.54 1 - 0.458 0.481 5.0% 0.1
AQIRINGS 5 0.1 0.458 0.458 tuning 0.1
AQIRINO05.53 5 0.1 (.458 0.435 -5.0% 0.1
AO0IRING5.54 5 0.1 0.458 0.481 5.0% 0.1
AOQIR2N05 5 0.2 0.458 0.458 tuning 0.1
AJIRZN05.53 5 0.2 0.458 0.435 -5.0% 0.1
AO1R2N(5.54 5 0.2 0.458 0.481 5.0% 0.1
AQIR4NDS 5 0.4 (.458 0.458 tuning 8.1
AUIR4ND5.53 5 0.4 0.458 0.435 -5.0% 0.1
AQIR4N05.54 5 0.4 0.458 0.481 5.0% 0.1

Mis-tuning MTLD (N=5) with various frequency distribution range, AR=0.1,
0.2, 0.4 were simulated and the results are plotted in Figs. 6.6b, ¢, and d,
respectively. It is found that the MTLD with AR=0.2 is insensitive to the tuning
condition, namely, the maximum structural response dose not vary too much
even the MTLD mis-tune to the structure (Fig. 6.6c). The MTLD with AR=0.1
although mostly reduced the structural response when it tuns, the effectiveness
becomes poor under mis-tuning condition (Fig. 6.6b). The MTLD with AR=0.1, is
also not effective in the case of mis-tuning (Fig. 6.6d).
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Figure 6.6a  Effectiveness of TLD under mis-tuning condition (STLD).
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Figure 6.6b  Effectiveness of TLD under mis-tuning condition (MTLD, AR=0.1).
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Figure 6.6¢c  Effectiveness of TLD under mis-tuning condition (MTLD, AR=0.2).
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Figure 6.6d Effectiveness of TLD under mis-tuning condition (MTLD, AR=0.4).
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6.4 EFFECTS OF CENTER LIQUID DEPTH RATIO

TLD with different liquid depth ratio has different damping. The effects of
liquid depth (or damping of liquid sloshing) are discussed in this section.

fable 6.4  Simulation cases for effects of liquid depth ratio.

A T B e i

Case name N 4R f{Hz) fs(Hz) £o A (cm)
AOTRONO1 1 - 0.458 0.458 0.1 0.1
AOIRINOS 5 0.1 0.458 0.458 0.1 0.1
AO1RONO1.Hé 1 - 0.639 0.639 0.2 0.1
AO1RINO5.H6 5 0.1 0.639 0.639 0.2 0.1

The MTLD with £=0.1, 0. 2 are shown in Figs. 6.7a and 6.7b. Note that the
same size TLD tanks were used for these two cases, so the center frequencies of
MTLD are 0.458 Hz and 0.639 Hz, respectively. The structural frequencies tune to
the MTLD (Table 6.4). From Eq. (5.11), it can be known that the liquid damping is
inversely proportional to liquid depth ratio, so the damping of center TLD in
MTLD (i.e., fi=fo) with &=0.1 is about two times of that in MTMD with £,=0.2.

o
7
i
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ki

Figure 6.7a  Effects of centrai liquid depth ratio (£,=0.1).
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Figure 6.7  Effects of Center Liquid Depth Ratio (£,=0.2).
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From Fig. 6.7, it can be found that both STLD and MTLD with small depth ratio
(£,=0.1) have better effectiveness (Fig. 6.7a) than that with large one (g,=0.2) (Fig.
6.7b). When using MTLD, the maximum structural responses are reduced to half
of that using STLD. The response with MTLD with £,=0.2 (Fig. 6.7b) have several
local peaks since the liquid sloshing has small damping. This is similar to the
case using small damping MTMD as discussed by Yamaguchi et al. [1991]. By
increasing the damping of MTLD with £,=0.2 to certain value, the effectiveness of
the MTLD can be improved.

6.5 EFFECTS OF EXCITATION AMPLITUDE

As discussed in Section 5.1, the liquid sloshing becomes nonlinear under large
amplitude base excitation. The nonlinearities of liquid sloshing may affect the
performances of MTLD. The structural responses with various values of A
which is the resonant amplitude of structure response without damper were
simulated (Table 6.5) in order to study the effects of the nonlinearities.
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Table 6.5  Simulation cases for effects of amplitude of structure.

Case name N AR f,(Hz) f(Hz) A (em)
AOQIRONO1 1 - 0.458 0.458 0.1
AQ1RINO3 5 0.1 0.458 0.458 0.1
AQ5RONO1 1 - 0.458 0.458 0.5
AD5RINQS 5 0.1 0.458 0.458 0.5
AIT0RONO1 1 - 0.458 0.458 1.0
A1ORINGS 5 0.1 0.458 0.458 1.0
A20R0ONO1 1 - 0.458 0.458 2.0
A20R1NO5 5 0.1 0.458 0.458 2.0
A50ROND1 1 - 0.458 0.458 5.0
A50RINO5 5 0.1 0.458 0.458 5.0

For the cases with A=0.1cm and 0.5¢m, the liquid sloshing appears linear, s0
the maximum response of the structure is significantly reduced by using MTLD.
The effects of the nonlinearities of MTLD can be observed from the cases where
A21.0cm. There are several local peaks on the response curves of the cases
A=1.0cm and A=2.0cm, indicating the effects of the higher harmonics of liquid
sloshing. The maximum structural responses for these two cases do not change
so much even using MTLD. For the case A=5.0cm, it is known from the
simulation that the breaking waves occurred. The structural response is almost
the same either using STLD or using MTLD.

Figure 6,8  Effects of excitation amplitude.
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6.6 SUMMARY

The effectiveness of TLD can be improved by using MTLD even with small
damping if a suitable frequency distribution range are used. The effectiveness of
MTLD is sensitive to the frequency range over where the MTLD are distributed,
but is not so significantly affected by the number of MTLD.

MTLD with a suitable frequency distribution range is effective for suppressing
the vibrations of a mis-tuned structure .

The improvement by using MTLD over STLD is not significant when the
liquid sloshing in TLD is strongly nonlinear. MTLD has almost the same

effectiveness as STLD when the breaking waves occur.

TLD in practice consists of a number of tanks with same size filled by water.
The damping of water sloshing is small and this gives a negative effect to the
performance of TLD. It is easy to design a MTLD by using a number of tanks
filled by slightly different liquid depth and no need to try to increase the damping
of water sloshing to an optimal value as did for STLD. The MTLD is very

attractive for application.
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CHAPTER 7 CONCLUSIONS

A two-dimensional nonlinear model for liquid sloshing in a rectangular TLD
under horizontal motion was proposed previously by the author based on the
shallow water wave theory. The model is improved in this study with emphasis
on the damping of liquid sloshing. Its validity is assessed by the shaking table
experiment. It is shown that the model can describe liquid sloshing in TLD,
moreover the response of structure with attached TLD with satisfactory accuracy.

The proposed model is extended to be able to deal with the liquid sloshing in a
TLD subjected to pitching motion. The simulations by the model agree well with
the experimental results, indicating that the model is valid for predicting liquid
sloshing under pitching motion. The simulations by the model reveal that the
TLD attached to a structure under pitching motion is very effective even with a

small ratio of moment of inertia.

Breaking wave is a significant phenomenon of liquid sloshing in TLD, and it
gives high damping to liquid sloshing. The model for liquid sloshing under
horizontal motion is modified by introducing two coefficients Cy, and Cp in the
basic equations, which stand for the effects of breaking waves on the damping
and the natural frequency of liquid sloshing, respectively. Cy, and Cp are
determined by the shaking table experiments. This modified model is
experimentally assessed. It is found that it can predict the structural responses
with attached TLD even when breaking waves present.

The SOLA-VOF code is employed to simulate liquid sloshing. It is however
found that the code is not valid for an engineering application to predict the
liquid sloshing with breaking waves. Much effort must be devoted for the
improvement of the SOLA-VOF method.

Both the experiments and the theoretical simulations show that the liquid
sloshing in TLD is strongly nonlinear and reveals hardening-spring property
when liquid is shallow. Higher harmonics of liquid sloshing which have natural
frequencies of approximately odd number times of the fundamental one,
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contribute some effects near the primary resonance and make the liquid sloshing

properties more complicated.

The basic parameters affecting TLD effectiveness are discussed on the basis of
theoretical studies. These parameters are affected by several physical quantities
such as TLD tank size, liquid depth, and liquid viscosity. The relations between
them are discussed. These discussions are also expected to be helpful for TLD

design.

The mechanism of TLD is explained based on the understanding to that of
Tuned Mass Damper (TMD), a well-known mechanical damper. Similar to TMD,
TLD is installed to a structure to suppress vibrations of structure by shutting out
the input energy to the structure and by dissipate the vibrational energy. The
damping of liquid sloshing is a significant parameter affecting the effectiveness of
TLD. Itis found that the effectiveness of TLD is comparable to that of TMD if the
damping of liquid sloshing is controlled to a suitable level.

Usually plain water is used as the liquid in TLD. The damping of liquid
sloshing in such case is much lower than the optimal value since as the viscosity
of water is low. The experimental studies show that the damping of liquid
sloshing can be increased by using shallow liquid, using high-viscosity liquid, and
adding floating materials. on free surface of liquid. It is found that the
effectiveness of TLD can be improved by increasing the damping of liquid

sloshing,.

The effectiveness of multiple TLD is studied by the simulations. It is found
that the multiple TLD is more effective than a single TLD even with low
damping; and the MTLD is insensitive to the tuning condition. The multiple
TLD design is a very attractive concept for application.

Active TLD should be studied in the future.
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NOTATIONS

The following symbols are used in this paper:

A

a

b
AE
AE’

e R S VY

Mo
Nmax: Mmin

’ v
N max: M'imin

hy

fa

amplitude of base motion of TLD;

half length of TLD tank;

width of TLD tank;

energy loss in TLD per cycle;

dimensionless energy loss in TLD per cycle;

hfa, ratio of liquid depth to half length of TLD tank;
energy input into TLD;

®{x,z,t), potential function;

base shear force of TLD;

amplitude of base shear force, F;

dimensionless amplitude of base shear force;
excitation frequency;

fundamental natural frequencies of liquid motion and
structure respectively;

gravity acceleration;

depth of liquid;

free surface elevation of liquid;

free surface elevation of liquid near the end wall of TLD
tank;

maximum and minimum of liquid free surface elevation at
the end wall of TLD tank in one cycle;

dimensionless maximum and minimum of liquid free
surface elevation at the end wall of TLD tank in one cycle;
depth of boundary layer near the bottom of TLD tank:
wave number;

damping coefficient of liquid;

damping coefficient of water;

ratio of liquid mass to structural mass;

mass of structure;

stiffness of structure;

damping ratio of structure;

mass of liquid;

division number of x for numerical simulation;
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Po
POtPn

X,z
Xs

pressure in liquid;
pressure on free surface of liquid;

liquid-induced pressure forces acting on the left and right

end wall of TLD tank respectively;

density of liquid;

kinematic viscosity of liquid;

free surface contamination factor of liquid;

period of excitation;

time;

shear stress near the bottom of TLD tank;
fundamental natural period of structure;
fundamental natural period of liquid sloshing motion;
horizontal velocity of liquid particle on free surface;
horizontal and vertical velocities of liquid particle,
respectively;

angle frequency of excitation;

angle natural frequency of structure;

local Cartesian coordinate system; and

base motion of TLD in a fixed Cartesian coordinate system.
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APPENDIX A Derivation of Basic Equations for Liquid Sloshing Under
Horizontal Motion

A.1 Governing Equations and Boundary Conditions

As shown in Fig. A.1, the liquid motion is assumed to develop only in x-z
plane and is two-dimensional. Liquid is assumed as incompressible, irrotational
fluid, and the pressure at liquid free surface is constant. The following discussion
is restricted to long period oscillation and continuous surface boundary condition

{(no breaking waves).

The full equations governing the liquid sloshing are the continuity equation
and the usual two-dimensional Navier Stokes equations for an incompressible

fluid, namely,

Ju aw
) Al
ox az =0 (4.1

— b Y o o Y B - + V(o) - ¥, (A.2)

ow , w  dw_ 13p 2w dw
E R T R PR R “43)

where 1, w are the velocities of liquid particle in the x-direction and z-direction,
respectively. p is pressure. p, v are respectively the density and kinematic
viscosity of liquid.

For liquid having relatively small viscosity, the effect of internal friction in
the fluid is appreciable only in the boundary layer. The flow outside the
boundary layer may be considered as potential flow, and the equations of motion

become

du Ju odu _ 19p
= = =4 -th-hp) sz <1, A4
Y +uax+w§;~ pax Xs (-( b) Z n) ( )

ow Jw Jw 1 dp
bl — ol L -(h-hp) <z <n), AL
a{ + U ax -+ a?-'é";“ P 3z & ( (h b) Z 7?) ( )
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The equations of motion inside boundary layer are

d P P 9 0%y

“é?”"””é‘g'"*w’é’g“ﬁ'%éﬂwé? % Chsz<-(eh), (4.9
.1..,__8}7:- o< Ah-
rr g (hsz<-(h-h). (A7)

The boundary conditions are

u=0 on the end wall (x =+ a), (A.8)
w=20 on the bottom (z = - h), (A.9)
w = bn 91 + U i} on the free surface (z = 1), (A.10)

p = po = constant on the free surface (z = 7). (A.11)

A. 2 Derivation of Basic Equations

Rased on the shallow water wave theory, the velocity potential & is assumed
for the main flow. The governing equations are integrated with respect to z since
the liquid depth considered in this study is shallow and the horizontal velocity of
liquid particle is a weak function of z. The damping of liquid sloshing due to the
boundary layer and the free surface is included in the equations. The flow chart
of derivation of basic equation is shown in Fig. A.2.

Figure A2 The Flow Chart of Derivation of Basic Equation.

Governing Egs. Basic Egs.
{independent 7 (independent
variables: x,z,1) - J dz variables: x,1)
Eq. of Continuity wl »! Eq. of Continuity
i
[ dz
Eq. of Motion - | Eq. of Motion
{x-component} "
+ |
Eg. of Motion - Qﬂ:
(z-component)| g ox
f dz then =
4
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For the flow outside the boundary layer, a velocity potential & is assumed,
based on the shallow water wave theory, as

@ (x,z,)= G(x,1) cosh(k(h+z)), (A.12)

where G is a arbitrary function. The velocities of liquid particle and their
differentials can be expressed as

0P 0G

U = ——=—cosh{k(h+z)), (A.13)
dx ox
= %—?— = kG sinh(k(h+z)), (A.14)
1 Bu
= -G tanh(k(h+z)), (A.15)
k ox
aw » J_ 32
E TR afG tanh(k(h+z)), (A.16)
G tanh(k(h+2)). (A.17)
ox oz
At the free surface,
_ 1 9u(n)
dw(m _ 1 du(n)
ok awar (4.19)
ow(n) ouln) _
ax - az - k (n) TH} (AZO)

where Ty = fanh(k(i+mn)).

Neglecting the thickness of boundary layer and integrating the continuity
equation (A.1) with respect to z, the continuity equation can be approximately
expressed, with the aid of Egs. (A.9) and (A.10), as

on o(gu(m)
hild§ - A2
= + ho — 0, (A21)
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where

_tanh (kh)
o= P {(A.22)
_tanh (k(h+7))
T tanh(kh) (423

The equation of motion in integral form is derived as following. First, to get
the expression for (1/p) 3p/3x), Eq. (A.3) is integrated with respect to z and then
differentiated with respect to x. With the help of Egs. (A.13) to (A.20), as a result,
the (1/p) (9p/0x} is expressed as,

199 éj_?__!_(ij_ig_) 3774_(?},{_) _?_uﬂ,l_(w) -l.(w), (A.24)

D% 8% | Of gyt | Of gy OF 20X gg 2 OX

Then substituting Eq. (A.24) into Eq. (A.4) and Eq. (A.6), we have

ou ou ou ow on
(-a?)z_—;n * (u_a—; N aZ )z_—-_,n M (g +(-a—t_)z=n _gx—
. (A.25)
{ -~ X3 (-'(h—hb)SZSn),
o%u
vigeks  Chszshoh),
Integrating Eq. (A.25) with respect to z form bottom to free surface:
o(h-kp)

du am , ou _ou dw, on u ., .
e ot (e + W —) = —dz-X;. (A2
(at )z=n +gax + (u " + waz)zzn +( 5 )zznax #_Y——(mh) 3 z-Xs. (A.26)

&

This equation, which is independent of z, is the integral form of the equations of
motion. Each terms in Eq. (A.26) can be expressed in terms of the horizontal
velocity at the free surface u(1), the surface elevation 7 and their differentials as

following.
Wy cardedy | (A27)
ox 0z 2= 09X =g
ow, o Fnon
2y o —t A28
(at )zznax gho¢ PPN (A.28)
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v PU w3t (A.29)
(n+h) dz2 ’ '
-k
where 4 is called the damping coefficient and will be explained in Section A.3.
Thus Eq. (A.26) can be equivalently written in the form,
du(n) > au(n) o*n o .
e — = - - ¥s. A.30
5 + (1-T) u(m gax + gho 3 5 Au(n) - ¥ (A.30)

The basic equations are Eqgs.(A.21) and (A.30).

A.3 Damping of Liquid Sloshing

The dissipation term (Eq. (A.29) is due to the boundary layer, and can be
simplified in following procedure.

~{h-hi)
82
4 5’2""2'11 = ;}‘ (Bzme(h-by Ta=-i)s (A.31)
-k
where
o=t
PPV

is shear stress. It is assumed that the shear stress outside the boundary layer is
very small and can be neglected. Thus,

Bzu 1
-——d. Z = p Tb, (A.32)

where T=%.4 , is the shear stress at the bottom.

From the linear and laminar boundary layer theory [Lamb 1932] and
considering sinusoidal excitation, 7, is 7/4 out of phase with the horizontal
velocity component of liquid just outside the boundary layer, u,. Using the
concept of equivalence of energy loss per cycle, the 7, can be expressed as

=p %W s, (A.33)
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in which 147 is an equivalence factor due to the phase lag #/4, and o is the
angular frequency of the liquid sloshing. In the present study, since the liquid
depth is shallow and the liquid sloshing is shallow wave, we assumed that
ws=U(M  Thus,

T=p ?12-@6 u(m). (A.34)

Miles [1967] has studied the damping of surface wave in a rectangular tank and
suggested that the dissipation term can to multiplied by (1+2h/b+5), where b is
the width if the tank, to account for the dissipation due to the side wall friction
and the liquid surface contamination. 2h/b is a equivalent coefficient of the
damping effect per width due to the side wall boundary layer. It is regarded that
the friction of side wall boundary layer is the same as that of bottom boundary
layer. S is a "surface contamination” factor which can vary between 0 and 2. A
value of unity will be used in this study, which corresponds to the establishment
of "the fully contaminated surface”.

The dissipation term with the effects of side walls and the free surface is

-(h=hb)
o%u rm1 420 A
E ™ e _..l_.u ..,.1...— ] = -
(n+h) -é;idz n+h ¥2 ol b S = -2 @3

where

-1 1. 2
) 7 ﬁmﬁ(u—b’m). (A.36)
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APPENDIX B Solution of Basic Equations for Liquid Sloshing Under Horizontal
Motion

B. 1 Nondimensionalization of Basic equation

The variables are nondimensionalized as follows:

=X =z g=N gk
a z h n hl 8 al’
=4 =t K=k B.1
C. 1 (B.1)
N 3 .
X = ~a"~xs, W' = wt,,

where Cp =~ gh is wave velocity and ¢, =4/C, . The variables with a prime are
dimensionless ones.

Substituting Eq. (B.1) into Egs. (A.21), (A.30) and (A.8), we obtain the
dimensionless basic equations,

an' | _ogu(n) _
5t O =0, (8.2)
au‘(n) 2 au (77) 282 .
l"‘ 1 ) "2,' L] _ oaet? , B.
57 + (1-Tg) w'(n) p ax C@Eaxza w(m-x's (B.3)
and the boundary condition
u'lm=20 on the end wall (x' = £+ 1). (B.4)

The dimensionless damping coefficient A’ is

~—1-—-xf“ (1+—h+5) (B.5)
"7 +1 Y2¢C

B. 2 Discretization of Basic Equation

The basic equations are simultaneous differential equations. First, the
equations are discretized with respect to x into n divisions. Then the
simultaneous difference equations are obtained and are solved using Runge-
Kutta-Gill method. It should be noted that the dispersion relation of the basic
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equations is replaced by that produced due to the discretization of x in this
procedure. The latter is dependent on the number of division n.

Considering first mode of liquid sloshing, to which corresponding

dimensionless wave number,

lzﬂ,:
k 5 (B.6)

Writing the basic equations (B.2) and (B.3) in the form,

o7’ 8¢(u (m)

Y P (8.7)
ou')  on' 0K A o
where
H =113, (B.9)
3 2
K =u?, (B.10)
C = ope?, (B.11)
_197?

20x" (B.12)

Discretizing the container length as shown in Fig. B.1, the difference basic

equation are obtained.

Figure B.1  The Discretization with respect 1o x.

X=- N S oX=]
C] :, i C';-|E Ci ::,C”;: E Cn
hl E 5 h'l""!‘: hi ;' h)-‘-ll ; hn
®. Qbﬂ-:: ®i ¢ P : Pn
U; : E Ul i Uz : Uh—i% ; Un

I ;-—é“*ﬁ—*r‘\—’éi;;—?’é'?‘o
7?o T :“7)- 7?; ' Tlnl: : nn'—x;nn
Ko Ki K;m, Ks : Krtis ' Ka-iKn
Iai 1 ': ; Iiw]i li : I;%»E; ; Iﬂ“l%[ﬂ
& AX 4X
2 2
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d !'- L (1} .
___“___dﬂ} =L (pu' (M- (Mi1)  (=1~n-1),
' Ax'

Mo _. 26 (),
dt Ax'

AMn _ 20 400 (1)
dt' Ax'

Ay 1 (i HiKiaKi) + Cillin-ID) - K- 0%s - (i=1om),

at'  Ax'
where,
Ax'-—-%««,
¢ = tanh(k'e(1+ (i1 +0' )2 tank(k'e)  (i=1~n),
H; = (1-(gtanhke)D)  (i=1~n),
K= ((iu's) /2P (=1~n-1),
L= (i) /QAXND /2 Gi=1~n-1),

and

A = 1 VQV. (142h/b+S).
L1+t /2 {2eC,

Form the boundary conditions,

KO':K?{:OJ

(B.13)
(B.14)

(B.15)

(B.16)

(B.17)
(B.18)
(B.19)
(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

To replace the dispersion relation of the basic equations by that due to the

discretization, the division number is determined by,

n = n/(arccosv/tanh(nee) / Qtanh{ne/2)}).

(B.25)

After determining the division number n, the difference basic equations are
solved numerically by using Runge-Kutta-Gill method and u(n) and 77 can be

obtained.
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B. 3 Runge-Kutta-Gill Method

The difference basic equations (B.13,14) and (B.15,16) can be expressed in the

vector form,

dn

=f 211,
ar - fenw
du _ 4

dtl g(tr fu)l

where
M= (Mo Ny oo My woos M)y
u = (u'y, u'y, .., 0y, .., 0.
Initial conditions are
Mo=0 (1=0),
U =0 (t=0),

where the subscript denotes the time step.

The common formulas of Runge-Kutta-Gill method are

Mm+1 = Nm + %*« (Ki+Q2-V2) Ko+ (2+V2)Ka+Ky),
Um+1 = Uy + "Agt““ (L1+(2“E)L2+(2+ﬁ)13+144),

where, At in increment of time t and
Ky = f(tn,Mmum),
L1 = gltm,Nmttm),
K; = f(tm+%i~, nm+é52iK;, um+%_iL1),

L2 = g(tm'*‘%i“; nm'*"%—tle um+éz—t~L1),

Kj = f(t+

(B.26)

(B.27)

(B.28)

(B.29)

{(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

ﬁ};, nm+%1m1<1+(1 —%:)Ath, um+f%mm +(1 Ji@mﬂ.,z), (B.38)
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Ky = f(tm+%t, nmiglArK2+(1+gZ)AtK3, umi%——l—Ath-i-(l +12@)AtL3), (B.40)

Ly = gltm+4L, nm—%mxz-»mgi)mks, umi%ml.ﬁ(l +€2~)AtL3). (B.41)

ewtaas ‘;;&M,a.-:_:
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APPENDIX C Derivation and Solution of Basic Equations for Liquid Sloshing
Under Pitching Motion |

C.1 The derivation of basic equations

The theoretical model is based on the shallow wave theory and the
nonlinearity has been taken into account. The approach employed here is
similar to that used in App. A

Governing Equations

. Figure C.1  The TLD fank under Pitching Motion.

The motion of TLD tank is shown in Fig. C.1. The coordination system XOZ is
fixed and the another coordination system xoz moves with TLD tank. The
motion of TLD tank can be expressed by Xy, Z(, and 6.
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Equation of Continuity:

Ju oJw

Equations of motion (Eular's equations):

du ou ou 1 a}j <
e —— el s '2
3 + uax + wé—; e + fdy (hb Z<h+’n), (C )

ow dw dw 1dp <
5 + uwé; + w—é;» » §z~+ a; (msz<h+n), (C.3)

where g4, and a, are the inertia forces.

Boundary conditions:

u=_0 (x =tq) (C.4)

w=0 {(z=0) (C.5)
_on . dn B _

w——é—t—+ua (z=h+n) (C.6)

p=po=const. (z=h+n) (C. 1

The liquid damping is only considered in the boundary layer near the solid
walls, and the treatment is similar to that proposed in App. A. For simplicity, the
equations of motion are taken the form of Eular's Equation. The damping effect
will be added lately.

The Inertia Forces in a Rotational Coordination System

As shown in Fig. C.2. the fixed rectangular coordination is X0Z, and another
rectangular coordination system xoz for which the origin is at O rotates around O
with angular deformation 4. The inertia forces under the system xoy are

mx =m(-gsin6+ 22é+xéz+zé) (C.8)

mz'=m (- g cos - 246 + 202 - x6) (C.9)
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ﬁgur@ C2 The Inertia Forces in a Rotational Coordination System.

z A<

mz

where the 1st term is the effect of gravity; the 2nd term is Coriolis’ force; the 3rd
term is centrifugal force, and the 4th term is tangent acceleration force.

Comparison of the order of external forces.

{axw-gsine-i-%:}w +6’z +.é2x~5€o cos6 - Z, sin (C.10)
A, =- g cosO-26u - 6x + 8% + X, sinf - Z, cos@ (C11)
Assuming that:
&~ E gio, (C.12)
x~hgefﬂ", (C.13)
z~a,§ei“. (C.14)
50,
é~ mg giox, (C.15)
i~aﬁ55‘“’", (C.16)
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And assuming that:

U ~ T eillx-0t)

w o~ el

50,

From z-component of equations of motion, we know that

Ea

ou~g

and for shallow liquid sloshing, h << a.

The orders of each terms in ay and 4z are shown as follows:

Ay =-gsin 6+20w + 0z + 0% - Xo cos 6— Zg sin @

d d d
gg 06 ho®
d ! 4
1 & o

u u
<<O(1)

\:

a(a)g) 2
!
209
U

<<0(1)

d
Xo

4
2{;%
g6

a;=-gcos 0+ 26u + éxa«ézz + Xgsin @ - Zocos 6

! d d 3

g w,éﬁ aw2§ h(wg) 2

l ! 4 d

1 9 hw awg
<<(O(1) <<uO(I)

!
)
1
X

(C.17)
(C.18)
(C.19)
(C20)
(C.21)
(C.22)
d
Zo0
~ (C23)
L x1/(g6)
7
8
3
Zy
1 <1/g (C.24)
A
8
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Neglect the term whose order << O(1) and we get

ay=- (g + Z,) sinf + 0z - X, cos6 (C.25)
3 T (C.26)
Az =-(g+ Z,) cos@ - 6x + X, sin@
Derivations
Assuming the potential function:
@ = F(x,t) cosh(kz) (C.27)

Integrate the equation of continuity respect to z,

on ., dgu(m) _
at+h0 5 =) (C.28)

where

tanh(kh)
- ‘. C.29
o oh (C.29)

_tanh(k(h+ 1))
T tanh(kh) (30

Eliminate p in z-component of equation of motion by using x-component, and

integrate the equation obtained respect to z,

2 ..
du(m) + %au;n) +((g+ Zg) cosf - Xosin + 6x
x

ot (€31)

+(g+Zp) cosehcqﬁﬁ)?ﬁ =-(g+Zg) sinf - Xo cos6 - Au(m)
ox?2 ox

Forces and Moment due to Liquid Sloshing

From z-component of equation of motion, neglect the effect of vertical
acceleration of liquid particles and other higher orders and consider static

pressures only,

p-po=-pa,(h+n-z) (C.32)
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The forces and moments (Fig. C.3) due to liquid sloshing are

Fp=- «},3 pbag (h+12)" - (h+1.0)),

F,= [ pba(h+mdx ,

]

M=- 16— pba (h+1.)° - (h+7.0)°) - I pba, (h+mxdx .

-

Nondimensionalization

on' | d¢u'(n)
=0
ar 7 ax

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)
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um) 10w’
ot' 2 ax'

+((l+ )6059 %zn&—a—_g@x +(1+Z°)coseha¢gza;n3 3173

=-(1 +—Z—Q) sian-mx—Qcosew’Lu'(n)
8 £ ZE

B.C's:

u' =0 (x' =Z1).

(C.38)

(C.39)

In this study, the period of sloshing is regarded long and the deformation is

small, the dimensionless basic equations are

i, SO _ g

ot' ox'
u'(m 1 3uwm?
ot' 2 ax'
vl
+ (cos8 + cosB hod 828 713) I

ox? ox’

=-Lging - 2 cos0 - A3u'(m)
£ g€

Discretization

The basic equations can be rewritten in the form of:

outm 3B 5 9 p 9B B aum)

ot ax ox ox

where
=1L 2
2u(n) )
. Zo Xo o ab)
Bs (1+g )co‘s‘6+ : sind+x 2
33.—_(14-@'&)6(;32%038
B4-l—< )

= -(1+Zg-°-)v~gsin6 Xo cost

(C.40)

(CA41)

(C.42)

(C.43)
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Figure C.4  Discretization.
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B21
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B51
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B4
x0

The discretizied equations are:

%’Z_Ezwgm(¢;u;~¢f-1 up1) (i=1l~nl)
Ax
Mo_ 264, (C.44)
ot Ax
9Ny _ 20
ot mAx Ot

ou;
"‘é‘l‘”“l“(Bli-l =By + Boi (i1 - i)
t o Ax (C.45)
+ Ba; (Bagi1 - B4i)) +Bsi- A wi (i=1~n)

Dispersion Relation:
n= 4 (C.46)
2 arccos 4/ tanh (7€) 72)
2 tanh (7e/2)

The basic equations are solved by using Runge-Kutta-Gill method (App. B).
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