

## Aerosols I & II

ENVH 431, Oct 7 & 12 2009 Michael Yost, MS PhD Exposure Sciences Program - UW





## Introduction

- Particulate sampling is <u>different</u> compared to gas sampling. Particle sampling methods must consider physical as well as chemical properties
  - Particle behavior and toxicity depends on size, shape, and density, as well as chemical makeup
  - Often specific particle sizes must be collected
  - Particles are difficult to capture
- Aerosols
  - Solid or liquid particles dispersed in a gaseous medium
  - Classically, a 2 phase flow problem











## Aerodynamic diameter

*Aerodynamic diameter* ( $d_a$ ) is the diameter of a spherical particle of density  $\rho_0 = 1$  g/cm<sup>3</sup> which has the same terminal settling velocity in air as the particle of interest.

$$d_a = d_p \left(\frac{\rho_p}{\rho_0}\right)^{1/2}$$

Stokes diameter ( $d_s$ ) is the diameter of a spherical particle that has the same density and terminal settling velocity in air as the particle of interest.

$$d_a = d_s \left(\frac{\rho_b}{\rho_0}\right)^{1/2}$$
  $\rho_b$  is the bulk density

PM2.5 = particles with aerodynamic diameters < 2.5 microns

PM10 = particles with aerodynamic diameters < 10 microns

































- Filtration is the most important method used to collect aerosol samples
  - Easy, inexpensive, widely used
  - Variety of filter media and sampling devices









| Filter media                | Examples                                     |
|-----------------------------|----------------------------------------------|
| Mixed cellulose ester (MCE) | Metals, welding fumes, asbestos, etc         |
| Polyvinyl chloride (PVC)    | Total or nuisance dust, silica               |
| Teflon (PTFE)               | Paraquat, organic arsenic, PM mass, organics |
| Glass fiber                 | Polynuclear aromatic                         |











## Microscopic analysis (asbestos)

- Asbestos cassette is designed for fiber-counting accuracy
  - Conductive plastic minimizes static electricity
  - Cowl to promote even fiber distribution
  - 25 mm diameter improves fiber density on filter
  - "Plenum" back to avoid "wagon wheel" deposition pattern
  - Mixed cellulose ester (MCE) filter recommended (two filters for TEM
  - Sampling is "open face", with the cassette pointed downward







































