Aerosols I & II

ENVH 431, Oct 7 & 12 2009
Michael Yost, MS PhD
Exposure Sciences Program - UW

Objectives

– Know aerosol terms
– Describe commonly used techniques for aerosol sampling and size analysis
– Select appropriate aerosol sampling devices
– Explain the size distribution concept
Introduction

• Particulate sampling is different compared to gas sampling. Particle sampling methods must consider physical as well as chemical properties
 – Particle behavior and toxicity depends on size, shape, and density, as well as chemical makeup
 – Often specific particle sizes must be collected
 – Particles are difficult to capture

• Aerosols
 – Solid or liquid particles dispersed in a gaseous medium
 – Classically, a 2 phase flow problem

Definitions

• Dusts
 – Dry particulate matter
 • < 1 μm to 1 mm
 – Formed by grinding, crushing, etc.
• Fumes
 – Fine solid aerosol particles
 • 0.01 μm primary particles to 1 μm agglomerates
 – Formed by condensation of vaporized solid material
 • Welding, smelting, etc.
• Mists
 – Spherical droplet aerosols
 • From a few microns to over 100 μm
 – Produced by mechanical processes like splashing, bubbling, spraying, etc.
• Fogs
 – Droplet aerosols, 1 to 10 μm
 – Produced condensation from vapor phase
• Smokes
 – Complex mixtures of solid and liquid aerosol particles, gases, and vapors
 • 0.01 to 1 μm in diameter, with larger agglomerates
 – Caused by incomplete combustion.
• Fibers
 – Elongated particles
 • length to width ratio > 3:1

• Polydispersed
 – Wide range of particle sizes
• Monodispersed
 – Narrow range of particle sizes
Particle formation mechanisms:

Primary particle formation results from mechanical disruption of the earth’s surface.
- Direct generation of sand/dust aerosols
- Sea-spray aerosols resulting from bursting bubbles of entrained air.

Secondary particle formation results from Gas-to-particle conversion

----- Homogeneous nucleation
- N molecules form a stable cluster by diffusion induced collisions
- Cluster continues to grow
- Typically, a stable cluster is ~1 nm and contains 10’s of molecules
- Aqueous phase chemical reactions (oxidation of SO$_2$ to aerosol SO$_4$)

----- Combustion particle formation
- Results from the incomplete combustion of fuel (soot carbon etc)

Particle Composition

Primary aerosols: soil dust – iron, calcium, silicates; Sea-spray: sodium, chloride, calcium, sulfate, potassium, etc

Secondary aerosols: sulfates, nitrates, organics, halogens,
- Combustion aerosol: sulfates, nitrates, elemental carbon, organic carbon, soot
- Sulfates are derived from oxidation of SO$_2$
- Nitrates are derived from oxidation of NOx
- Organic (acids) derived from oxidation of VOC’s from plants, cars, etc.
Particle Characteristics of Particles

<table>
<thead>
<tr>
<th>Equivalent Mass</th>
<th>0.0001</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle (°)</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.01</td>
<td>0.1</td>
<td>1</td>
<td>10</td>
<td>100</td>
<td>1,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Stokes Diameter</td>
<td>100,000</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>100</td>
<td>1,000</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>Aerodynamic Diameter</td>
<td>1000</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>100</td>
<td>1,000</td>
<td>10,000</td>
<td></td>
</tr>
</tbody>
</table>

Particle Diameters

- **irregular particle**
 - \(d_s = 5.0 \mu m \)
 - \(\rho_p = 4000 \text{ kg/m}^3 \)
 - \(\phi = 1.36 \)

- **Stokes' equivalent sphere**
 - \(d_s = 4.3 \mu m \)
 - \(\rho_p = 4000 \text{ kg/m}^3 \)

- **Aerodynamic diameter**
 - \(d_a = 8.6 \mu m \)
 - \(\rho_p = 1000 \text{ kg/m}^3 \)

\[V_{TS} = 2.2 \text{ mm/sec} \]

Comparison of equivalent volume diameter, Stokes diameter, and aerodynamic diameter.
Aerodynamic diameter

Aerodynamic diameter \(d_a \) is the diameter of a spherical particle of density \(\rho_0 = 1 \text{ g/cm}^3 \) which has the same terminal settling velocity in air as the particle of interest.

\[
d_a = d_p \left(\frac{\rho_p}{\rho_0} \right)^{1/2}
\]

Stokes diameter \(d_s \) is the diameter of a spherical particle that has the same density and terminal settling velocity in air as the particle of interest.

\[
d_s = d_s \left(\frac{\rho_b}{\rho_0} \right)^{1/2}
\]

where \(\rho_b \) is the bulk density.

PM2.5 = particles with aerodynamic diameters < 2.5 microns

PM10 = particles with aerodynamic diameters < 10 microns

Motion of Airborne Particles

- Particles (aerosols) tend to remain suspended in the air until attractive forces act on them.
 - Settling velocity for small particles is less than ordinary air currents
 - Attractive forces cause particles to adhere to each other and to surfaces, causing them to be removed from the air
 - Smaller particles are more difficult to dislodge
Motion of Airborne Particles

- Sampling methods capture particles by various aerosol deposition mechanisms
 - Sedimentation (gravity)
 - Impaction
 - Interception
 - Diffusion
 - Other
 - Electrostatic attraction
 - Thermal deposition
 - Etc.

Motion under gravity

\[F_D = \frac{3\pi \eta D_p u_x}{C_c} \]

- \(F_D \) — Drag force
- \(F_B \) — Bouyance force
- \(mg \) — Gravitational force
Settling Velocity

\[
\ln(\text{Vts}) = -8.799 \times 10^{-3}x^3 - 2.024 \times 10^{-2}x^2 + 2.337x - 6.278
\]

where \(x = \ln(\text{diam})\) in microns; \(\text{Vts}\) in cm/s

Unit density spheres, sizes from 0.1 to 1000 um

Particle Removal mechanisms

- Sedimentation
- Impaction
- Interception
- Diffusion
- Electrostatic

These mechanisms can act together and strongly depend on the particle size
Sedimentation

- Larger particles can be captured by sedimentation (gravity)
- Note, primary (smaller) particles form larger agglomerates, with much faster settling times

Impaction

- Larger particles can be captured by impaction
 - Particle inertia carries it across flow streamlines
Interception

- Particles can be captured when the airstream carries them to within $\frac{1}{2}$ diameter of a surface
 - For larger particles

Diffusion

- Brownian motion causes particles to contact surfaces
 - Capture method for small particles
Electrostatic attraction

- Particles can be captured by electrical charge
 - Good for small particles

- Thermal deposition and other methods (magnetic attraction) also may be used

Particle capture by size

- The “most penetrating” particle (most difficult size to filter out) is ~0.3 micrometers in size:
Particle retention on surfaces

- Particles are strongly attracted to surfaces
 - van der Waals forces, electrostatic attraction, capillary forces, etc.
 - Smaller particles are more difficult to dislodge

Deposition of Inhaled Particles

- Size selective sampling relies on principles of particle physics to collect samples of different size particles.
- For industrial hygiene, particles are classified according to where they deposit in the respiratory tract:
 - Inhalable
 • Up to 50 µm
 - Thoracic
 • < 10 µm
 - Respirable
 • < 5 µm
Collection efficiency for particle aerodynamic diameter

END Part 1

- Questions?

- Part 2 covers aerosol sampling methods
Filter-Based Technologies

- Filtration is the most important method used to collect aerosol samples
 - Easy, inexpensive, widely used
 - Variety of filter media and sampling devices

Filter Media

- Fiber filters
 - Cellulose, glass, or quartz fibers
 - Low pressure drop, high loading capacity, inexpensive
 - May not be adequate for sub-micron particles
 - Water absorption problems may interfere with gravimetric analysis
Filter Media

• Porous membrane filters
 – Cellulose ester, PVC, PTFE, etc.
 – Porous mesh microstructure, convoluted flow path
 – Available in pore sizes of 0.1 to 10 µm
 • 5 µm pore size = 98% efficient for sub-micron particles
 – “Depth” filters
 • Particles are deposited within the filter structure, not just on the surface
 – Higher flow resistance, lower loading capacity

Filter Media

• Straight-through (capillary) membrane filters
 – Polycarbonate or polyester with uniform size pores
 – High-pressure drop, low loading capacity
 – Susceptible to static electricity and particle loss
 – Used for electron microscopic analysis
Filter Media

- Polyester foam
 - “Emerging technology”
 - Used for simultaneous sampling of multiple aerosol fractions
 - Foam plugs with final filter

Filter Media

<table>
<thead>
<tr>
<th>Filter media</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed cellulose ester (MCE)</td>
<td>Metals, welding fumes, asbestos, etc</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC)</td>
<td>Total or nuisance dust, silica</td>
</tr>
<tr>
<td>Teflon (PTFE)</td>
<td>Paraquat, organic arsenic, PM mass, organics</td>
</tr>
<tr>
<td>Glass fiber</td>
<td>Polynuclear aromatic hydrocarbons, strychnine</td>
</tr>
</tbody>
</table>
Filtration-Based Techniques

• Basic 37 mm Filter Cassette
 – Plastic cassette w/plugs
 • Filter paper
 • Backup pad
 • Outlet has air-distribution channels ("wagon wheel")
 – 2- or 3-pieces
 • 3-piece unit can be used “open-faced”, when an even distribution of particulate is needed
 – Chemically treated filters (i.e., glutaraldehyde, isocyanates)
 – Microscopic analysis (asbestos)

Filtration-Based Techniques

• Gravimetric analysis
 – Known volume of air drawn through a filter
 – Final weight - initial weight (tare) = mass of contaminant on filter
 – Concentration (exposure) = mass on filter / air volume = mg/m³
 – Filters usually must be pre-weighed
 • Laboratories provide pre-weighed, numbered filters
 • The industrial hygienist can weigh filters
 • Requires analytical balance, drying chamber, and good lab technique
Filtration-Based Techniques

• Gravimetric analysis
 – “Matched weight” filters are convenient, as the need to pre-weigh is avoided
 • Two “matched weight” filters are placed into the cassette
 • The upper filter = final weight
 • The lower filter = tare weight
 • The less tolerance in the “match”, the more the cost and the lower the detection limit

• Chemical analysis (various NIOSH and OSHA methods)
 – Known volume of air is drawn through the filter
 – For metals, the filter paper is dissolved, diluted, and analyzed (usually ICP or FAA)
 – For organics, the filter paper is extracted, concentrated, and analyzed (GC, HPLC, MS)
 • Contaminant mass is determined
 • Mass of contaminant/air volume = mg/m³
Filtration-Based Techniques

- Microscopic analysis (asbestos)
 - Asbestos cassette is designed for fiber-counting accuracy
 - Conductive plastic minimizes static electricity
 - Cowl to promote even fiber distribution
 - 25 mm diameter improves fiber density on filter
 - “Plenum” back to avoid “wagon wheel” deposition pattern
 - Mixed cellulose ester (MCE) filter recommended (two filters for TEM)
 - Sampling is “open face”, with the cassette pointed downward

25 mm cowled cassette, for asbestos
Filtration-Based Techniques

• Microscopic analysis (asbestos)
 – Phase Contrast Microscopy (PCM) analysis (NIOSH 7400)
 • Required for OSHA work
 – Transmission Electron Microscopy (TEM) required for “clearance sampling” in schools (EPA AHERA method, NIOSH 7402)
 • TEM is preferred by EPA
 • OSHA accepts NIOSH 7402 method

• Microscopic analysis (asbestos)
 – Transmission Electron Microscopy (TEM) required for “clearance sampling” in schools (EPA AHERA method, NIOSH 7402)
 • TEM is preferred by EPA
 – Fiber types identified
 – Smaller fibers can be seen
 – Unfortunately, there is no corresponding epidemiology, so the results cannot be interpreted properly
 • OSHA accepts NIOSH 7402 method
 – Fiber counting is by PCM
 – TEM is used to identify fibers for a more accurate count
Filtration-Based Techniques

- Inhalable samplers
 - “Traditional” cassettes under-represent the amount of inhalable particulate, especially for larger-sized particles (open-face collects more than closed-face)
 - Institute of Occupational Medicine samplers (IOM)

- IOM sampler (cont.)
 - Designed for “inhalable” particulate
 - 2 lpm, 25 mm filter
 - Removable cassette and filter are weighed as a unit
 - Open-face calibration required
 - No easy way to connect a calibration device
 - “Pickle Jar” and other open-face calibration methods
 - Inhalable samplers adopted by TLV
 - Refer to Appendix D of TLV book
 - OSHA sampling should be traditional open-face
Sedimentation-Based Techniques

- **Sedimentation** = “settling out” by gravity
 - Particulate matter tends to remain suspended in air
 - Normal ventilation rates usually exceed settling velocity
 - **Sedimentation devices**
 - Elutriators (settling chambers)
 - Vertical elutriator
 » Cotton dust sampling
 - Horizontal elutriator

Elutriators

- **Horizontal elutriator (cont).**
 - BMRC sampler, intended to capture respirable size particles
 - 5 µm midpoint
 - Seldom used today
Inertial techniques: Cyclones

• Cyclones
 – Centrifugal forces cause larger sized particles to move to be removed from the air stream
 – The cyclone acts as a “pre-separator”
 • Large particles collect in the “grit pot”
 • Smaller particles pass through the cyclone and are collected on a filter
 • “Cut size” \(d_{50} \) (50% efficiency size)
 – 5 \(\mu \)m (old BMRC)
 – 4.5 \(\mu \)m (OSHA)
 – 4 \(\mu \)m (ACGIH, ISO/CEN, “Soderholm”)

Cyclones

10 mm Dorr-Oliver Cyclone (OSHA)
BGI metal cyclone
SKC aluminum cyclone
Cyclones

- Cyclone calibration
 - Often no direct way to connect calibrator
 - “Jar” method
 - Cyclone is placed into a “pickle jar”
 - Calibrator is connected to the jar inlet

- Cyclone calibration (cont)
 - Calibration adapters attach to the cyclone, providing a means to connect the calibrator
 - Calibrators can be attached directly to other cyclones, like the BGI metal cyclone

SKC calibration adapter
Cyclones

• Cyclone flow rates are critical to assure performance
 – 1.7 lpm (Dorr-Oliver) for 4.5 µm
 – 1.9 lpm (SKC) for 5 µm (old BMRC)
 – 2.5 lpm (SKC) for 4.0 µm
 – 2.2 lpm (BGI) for 4.0 µm

Cyclone Sampling

• Respirable Silica (NIOSH 7500)
 – Equipment
 • 10 mm nylon cyclone
 • Cassette w/5 µm PVC filter
 • 1.7 lpm
 – Collect a bulk sample of dust
 – Analysis
 • Filter is dissolved, and the suspension is re-filtered onto a silver membrane filter
 – Filter is analyzed by X-Ray Diffraction
 – Evaluation
 • PEL for dust mixture is based on % quartz, cristobalite, and tridymite (refer to OSHA guidance).
OSHA Silica Sampling

PEL for respirable silica

\[
= \frac{10 \text{ mg/m}^3}{\% \text{ quartz} + 2(\% \text{ cristobalite}) + 2(\% \text{ tridymite}) + 2}
\]

Impaction-Based Technologies

- Widely used to characterize aerosols
 - “Jet and Plate” impactors direct a stream of high-velocity air against a collection surface, characterized by the 50% cut size, \(d_{50}\)
 - Single-stage impactors often used as “preseparators”
 - “Cascade” impactors allow for simultaneous collection of multiple particle size fractions
 - “Anderson” sampler to characterize dust or biological sampling
 - “Marple” personal breathing zone sampler
 - “Virtual Impactor” separates particles into two streams (“dichotomous” samplers)
 - Konimeter (historic), dust impacted on glass plate, microscope counted
Impaction-Based Technologies

Inertial impactors: (a) conventional jet-to-pate impactor collecting a single size fraction (say all particles over 10 µm); (b) multistage or cascade impactor in which each stage collects a different size fraction; and (c) virtual impactor or dichotomous sampler in which size fractions are separated but not removed from the airstream.

Anderson Cascade Impactor
SKC Button Aerosol Sampler for inhalable dust sampling

- ACGIH/ISO collection curve
- 4 lpm flowrate
- 25 mm filter

SKC Personal Environmental Monitor for PM10 and PM2.5

- US-EPA collection curve
- 2, 4 or 10 lpm flowrate
- 37 mm PTFE filter