PART II

```

· Some applications of fluid mechanics

```

Fluid Mechanics – Pressure

- Pressure = F/A
- Units: Newton's per square meter, Nm⁻², kgm⁻¹ s⁻²
- The same unit is also known as a Pascal, Pa, i.e. $1Pa = 1 \text{ Nm}^{-2}$)
- English units: lbf/sqft, or inches of H₂O
- Also frequently used is the alternative SI unit the *bar*, where 1 bar = 10^5 Nm⁻²
- Dimensions: M L⁻¹ T⁻²

Fluid Mechanics – Specific Gravity

- Density (r): mass per unit volume.
- Units are M L⁻³, (slug ft ⁻³, kg m⁻³)
- Specific weight (SW): wt per unit volume.
- Units are F L^{-3} , (lbf ft⁻³, N m⁻³)
- sw = rg
- Specific gravity (s): ratio of a fluid's density to the density of water at 4° C

 $s = r/r_w$

• $r_w = 1.94$ slug ft ⁻³, 1000 kg m⁻³

Density correction

- Density of standard air = 0.075 lb/ft3
 - Air density affected by: moisture, temperature & altitude above sea level
 - Roughly, density corrections are needed, when:
 - Moisture exceeds 0.02 lbs water/lb of air
 - Air temp outside of 40 100F range
 - Altitude exceeds +1000 ft relative to sea level

