ESRM 441 Landscape Ecology

Dr. James A Freund jafchen@uw.edu

Website:

http://courses.washington.edu/esrm441

What is a landscape?

Landscape:

an area composed of multiple distinct elements that create pattern

What is landscape ecology?

the study of both the causes of ecological pattern and the effects of pattern on ecological processes

-J. A. Wiens

Landscape ecology emphasizes broad spatial scales and the ecological effects of the spatial patterning of ecosystems.

-M. G. Turner

Landscape ecology focuses explicitly on spatial patterns. Specifically... the development and dynamics of spatial heterogeneity, spatial and temporal interactions and exchanges across heterogeneous landscape, influences of spatial heterogeneity on biotic and abiotic processes, and management of spatial heterogeneity.

A new paradigm

Space, pattern, and heterogeneity matter

A broader approach to ecology

Emphasis on scale

Issue of scale is profound!

 Ecological understanding assumed an ability to extrapolate over spatial areas

 Studies attempted to predict phenomena without considering its size or position

The roots of landscape ecology

Classification of Major Plant Associations

von Humboldt 1807

Ecosystems

Tansley 1935

Geography

Troll 1939

The European School

Altered and managed environments

Human element

Landscape architecture and design

The American school

Island biogeography

MacArthur and Wilson 1967

Spatial ecology

Kareiva et al. 1980's

Hierarchy theory

Allen and Starr 1982

A young, evolving discipline

An integrated discipline

Heterogeneity:

consisting of distinct elements

an area composed of multiple distinct elements that create pattern

Scale:

spatial and temporal dimensions

Grain:

finest level of resolution possible

Extent:

total area or duration

Patch:

an area that differs from its surroundings

Matrix:

the background, not all landscapes have a matrix

Composition:

a quantitative or qualitative description of the elements that make up the landscape

Fragmentation:

breaking a landscape up into disconnected patches

Configuration:

the spatial arrangement of a landscape

Connectivity:

Continuity in a particular element of the landscape

Edge:

the portion of one landscape element that abuts another

Corridor:

landscape element that connects two or more patches

Topics Covered

Approaches to landscape ecology

Drivers of pattern

Scale

Measuring patterns

Effects of pattern on process

Models

Applied landscape ecology

Approaches to landscape ecology

(Landscape ecology and the scientific method)

Experiment Observation Model system Modeling

Tewksbury et al. 2002

McIntyre and Wiens 1999

Ecke et al. 2006

The causes of landscape

pattern

Topography

Hydrology

Climate

Geology

Disturbance

Ecosystem processes

Interspecific interactions

Human activities

Scale

Hierarchy theory

Scaling in ecological systems

Incorporating scale into ecological studies

Roland and Taylor 1997

Measuring pattern

Mapping landscapes

-remote sensing

-GIS

Pattern metrics

Spatial statistics

Effects of pattern on process

Ecosystem processes

Community structure

Population dynamics

Behavior

McRae 2004

Modeling landscape processes

Null models

Ecosystem models

Spatially explicit population models

Dynamic vegetation models

Hulse et al. 2002

Applied landscape ecology

Fragmentation

Connectivity

Corridors

Reserve design

Reserve selection

Disturbance

Esseen and Renhorn 1998

Fisher reintroduction study, Washington

Lewis and Hayes 2004

Landscape Ecology

Lecture/Discussion Tues 9:30-11:20 (WFS 107)

Thurs 1:30-3:20 (WFS 107)

2-3 labs during scheduled class time

Bloedel Hall 261

Readings Turner et al. Text & papers

Short papers 2, 5 pages, double spaced & 1

field trip report

Presentations 5 minutes on paper #2

Landscape Ecology

Midterm exam: In class midterm exam

Final exam: Take-home exam assigned last week of

class and due Wednesday of finals week

Field trip: Fri, October 4 to Sun, October 6

(weather permitting)

Landscape Ecology

Grading

Papers 3	30%
----------	-----

Midterm 20%

Participation 20%

Final exam 30%