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Lab Week 5 – Heat Flow and Temperature in Ice 

 

Heat Transfer in Ice 
 
This week’s lab is designed to give you a better intuition regarding the time scales of heat 
diffusion in ice. We use a few different solutions (numerical and analytical for some situations) 
of the heat equation 
 

𝜕𝑇
𝜕𝑡 = 𝛼∇'𝑇 − 𝑢 ∙ ∇𝑇 +

𝜑
𝜌𝐶/

 

 
to test some simple scenarios. It is not important that you understand the details of the numerical 
implementation of the models, or that you have a background in coding with python. Rather, the 
intent here is that you adjust inputs to the models and think about the results. 
 
To gain experience with solutions to the heat equation, we have prepared a Python notebook, 
which we hope will allow you to vary input parameters for a few scenarios and learn to better 
anticipate what the results might be.  
 
Some comments on using this notebook: 

• There are different cells for code and for 'markdown' which is the text. If you double 
click on the text you can change it, but there is no reason to do that (aside from the typos 
that inevitably exist somewhere). 

• I have provided helper notes on locations where I think that you should change the code 
to play around with one of the models (### Please Change! ###), as well as notes in 
places where you probably shouldn't change the code (### Don't Change ###). Having 
said that, if you are familiar with python feel free to change whatever you want. 

• The code can be run with the buttons at the top or from the keyboard. Press 'Shift+Enter' 
to run a cell and advance to the next cell or 'Ctrl+Enter' to run a cell and stay in it. 

 

1) Surface Perturbation 
First, we will examine a very simple scenario, where the entire domain begins at one temperature 
and then the surface is perturbed to a new temperature. Heat will begin to diffuse into the domain 
and warm up the ice below the surface. There is an analytical solution for this problem: 
 

𝑇 = 𝑇0 + ∆𝑇 erfc 6
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where erfc is the 'complementary error function'. This function is common in analytical solutions 
to the heat (and other diffusion) equation, so it is important to gain some experience with it.  
 
 
 



Python Notebook – Try it out 
Try running this function and making a figure! Everything is set up for you below, but try 
adjusting some of the parameters like T0 (initial temperature), dT (temperature change), t (time), 
and zs (distances from the surface) to get a feeling for the time scales for diffusion of this surface 
perturbation. 
 
Questions: 
 

1) How do the results compare to your intuition about how long it should take for heat to 
diffuse into the ice? 

 
2) If the temperature change is larger, does the perturbation propagate faster? Or is it simply 

a scaling factor? 
 

3) Did you try a different α (thermal diffusivity)? Does the rate of propagation scale linearly 
with α? Look back at the equation to help guide your answer. 

 
2) Harmonic Surface Boundary 
Now we are going to let the surface boundary condition change in time. If we chose to make the 
surface temperature a sinusoidal function, there is again an analytic solution to the heat equation. 
 
Surface temperature in time: 
 

𝑇(0, 𝑡) = 𝑇0 + 𝑇? sin(2𝜋𝜔𝑡) 
 
The analytic solution is:  
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Python Notebook - Try this new solution 
Same as before, we want to play around with this model to get a feel for how it works. There are 
initial some initial values in the Python Notebook to try out, and a plotting script, but try 
different numbers to get a feel for the behavior. 
 
*Please note that if you change the frequency you are probably going to have to change the times 
and the depths as well or you won’t be able to see anything useful in the plot. 
 
Questions: 
 
In Cuffey and Paterson (2010) Chapter 9, they give us some helpful insight into the equation that 
we were using above: 
 

• The amplitude of the wave decreases as exp 6−𝑧HKL
?
:. Thus, the higher the frequency, 

the more rapid the attenuation with depth. 
 

• Temperature maxima and minima propagate at a velocity 2√𝜋𝜔𝛼 



1) Use the points above to fill in the table from the book (reproduced below). Note that they 
use period 𝑃L (I use frequency 𝜔 = N

OP
). You could complete the table with only the 

equations, but try playing with the model to better visualize the result. 

 
 

2) In class on Wednesday we looked at some real data. I have plotted it again below. The 
'winter cold wave' persists in the ice well into the summer months. Does this agree with 
your results above? What was the Δt that you got for 1yr? Is it about the same as in the 
data? 

 
 

3) Can you derive the functions that Cuffey and Paterson (2010) give from the equation that 
we used above? Give it a try. The term for velocity might be a bit tricky. Ask yourself 
when is the sine wave at a maximum or minimum for a given depth, then solve for dz/dt. 
 

4) The 'skin depth' is that at which the amplitude of variations are reduced to 1/e, or 0.367, 
of the amplitude at the surface. Use the first bulleted point from Cuffey and Paterson 
(2010) above to derive the skin depth in our case. (Hint: this is very similar to their 
value 𝑧Q). 
 



3) Numerical Solution 
Sometimes (in fact most of the time) physical problems are not as elegant as those we have 
posted above. Often, there is no analytic solution to a problem for the boundary conditions that 
describe that situation. When problems are more difficult to solve, we must solve use using 
numerical solutions rather than analytical ones Below, we will progress from these specialized 
cases where the surface temperature had to be either fixed or harmonic, to a numerical solution 
where we can tell the surface boundary to be any temperature and vary with time. 
 
Note that the coding here is a more complex than for the previous cases, so feel free to run the 
code without paying attention to specific and focus on the results (varying input parameters and 
plotting the solutions). If you are keen to dig into the code, please do, and let us know if you find 
a more elegant way to implement a numerical discretization of the heat equation. 
 
Python – Model is Written 
Ok, if you ran the cell above, your computer knows the numerical model. Now we can run it!  
 
Below I set up a sample problem again. For now, it is exactly the same sine wave as in problem 
(2). Try running this to see if the answer agrees with the analytical solution. Then try a more 
complicated surface temperature. 
 
Questions: 
 
1) How is the numerical result different from the analytical result? Pay attention to the 'initial 
condition' that you started the model at (if you didn't change anything this initial condition 
should be constant at the air temperature). 
 
2) Try making the surface boundary condition something more complicated than a simple sine 
wave. How does the model respond? 
 
3) Try overlaying several sine waves of different frequencies. Before you plot the model result, 
think about which frequencies will propagate further into the ice. Does the result agree with your 
intuition? (Hint: you will probably have to change the times and the depths in the plots as well to 
see the result in the figures). 
 
Python – Animating the result 
The cell below will animate the model result that you calculated above. So if you don’t find it 
helpful, don't use it. 
 


