
EARTH AND SPACE SCIENCE 
431      PRINCIPLES OF GLACIOLOGY 
505      THE CRYOSPHERE  

Autumn 2018 
4 Credits, SLN 14855 
4 Credits, SLN 14871 

  

Lab Week 6 – Glacier Variations (Solutions) 

 

I. Glacier Equilibrium Response to a Change in Climate 
 
Consider three simple glacier geometries. Assume they reside in the same climate, all with an 
Equilibrium Line Altitude (ELA) of 3000m, and mass balance gradient !"

!#
 of 8 (m/yr)/km. All 

have constant widths.  
 

 

• Glacier 1 starts at an elevation of Z = 4000m and terminates at 2000m. Its steady state 
length, 𝐿%, is 8000m. Its characteristic thickness is 80m.  

• Glacier 2 starts at an elevation of Z = 3500m and terminates at 2500m. Its steady state 
length, 𝐿%, is 8000m. Its characteristic thickness is 160m.  

• Glacier 3 starts at an elevation of Z = 3250m and terminates at 2750m. Its steady state 
length, 𝐿%, is 2000m. Its characteristic thickness is 75m.  

 

1) Find the response times and equilibrium sensitivities (𝑑𝐿/𝑑𝑏) for each glacier. See if you 
can arrive at a compact symbolic expression for equilibrium sensitivity (valid for these 
simple geometries). You’ll need it later. 
 
We will start to solve this problem by determining the mathematical expressions needed.  
 
For each glacier we know where the equilibrium line is (3000m elevation). Thus we can use 
the given vertical gradient in mass balance to calculate the glacier’s terminus balance 
relative to the balance at the equilibrium line, which by definition is 0, or:  

𝑏) =
𝑑𝑏
𝑑𝑧 ∆𝑧 

 
In class on Monday (you will also derive this in homework #5), we determined the 
characteristics response time:  
𝜏 = −/0

"1
 where 𝐻% is the characteristic thickness and 𝑏) is the specific mass balance at the 

terminus at the glacier terminus. 
The glaciers are initially in balance (no net change in mass or length) and have constant 
widths (so we can neglect the width term), so any change in balance will results in a change 
in length of the glacier. We can determine the change in length through mass flux 
conservation. If  𝑑𝑏 is the spatial average of the change in specific mass balance  
 



(𝑑𝑏 = ∫ 𝑏4(𝑥)𝑑𝑥,
90
%  where 𝑏4(𝑥) is your perturbed mass balance), then the change in mass 

flux at the glacier’s original terminus is 𝑑𝑏 × 𝐿%. For a positive change 𝑑𝑏, this flux must be 
ablated away over the length the glacier advances, thus: 

𝑑𝑏 × 𝐿% = 𝑑𝐿 × 𝑎% 
where 𝑑𝐿 is the change in length and 𝑎% is the ablation rate (positive if the mass is being 
lost, i.e., the glacier’s surface is lowering). Rewriting this equation for the change in length 
for a given change in mass balance (the glacier’s equilibrium sensitivity) gives:  

𝑑𝐿
𝑑𝑏 =

𝐿%
𝑎%

 

Let’s think about what this means for one minute (we will need this for part 2). For glacier 1, we 
can calculate this as:  

𝑑𝐿
𝑑𝑏 =

𝐿%
𝑎%
=
8000
8 = 1000

m
m/yr 

Thus, if the mass balance changes by a spatial average of 0.5 m/yr (ice equivalent), the glacier 
would advance by:  

𝑑𝐿
𝑑𝑏 =

𝑑𝐿
𝑑𝑏 𝑑𝑏 = 1000

m
m/yr × 0.5

m
yr = 500	m	 

Conversely, if the if the mass balance changes by a spatial average of -0.5 m/yr, the glacier 
would retreat by 500m. Note that from the relationships above describe different aspects of the 
glacier’s behavior. The characteristic time is an e-folding time describing how long the glacier 
takes to reach its new equilibrium length. The 𝑑𝐿 is the glacier’s change in length, but that 
relationship does not contain information on how long that change takes to occur.  
 
Now we are in the position to calculate these quantities for each glacier.  
 
Glacier 1:  

𝑏) =
𝑑𝑏
𝑑𝑧 ∆𝑧 = 8

m/yr
km × −1	km = −8	m/yr	 

𝜏 = −
𝐻%
𝑏)
= −

80m
−8myr

= 10	yrs 

𝑑𝐿
𝑑𝑏 =

𝐿%
𝑎%
=
8000m
8	m/yr = 1000

m
m/yr = 1

km
m/yr 

Glacier 2:  

𝑏) =
𝑑𝑏
𝑑𝑧 ∆𝑧 = 8

m/yr
km × −0.5	km = −4	m/yr	 

𝜏 = −
𝐻%
𝑏)
= −

160m
−4myr

= 40	yrs 

𝑑𝐿
𝑑𝑏 =

𝐿%
𝑎%
=
8000m
4	m/yr = 2000

m
m/yr = 2

km
m/yr 

Glacier 3:  

𝑏) =
𝑑𝑏
𝑑𝑧 ∆𝑧 = 8

m/yr
km ×−0.25	km = −2	m/yr	 

𝜏 = −
𝐻%
𝑏)
= −

75m
−2myr

= 37.5	yrs 

𝑑𝐿
𝑑𝑏 =

𝐿%
𝑎%
=
2000m
2	m/yr = 1000

m
m/yr = 1

km
m/yr 



2) You are doing fieldwork on glacier #2 and, on your lunch break, ski over a small pass and 
find another glacier on the same mountain. You’re at the head of the glacier, which your 
GPS tells you is at 3200m. You can see that it has the same slope, and assume being close by 
and same aspect, it has the same mass balance gradient and ELA. But, it’s a bit cloudy down 
below so you can’t see the terminus.  

a. Estimate the new glacier’s length and terminus elevation from what you know about 
glacier #2. 

   
 This glacier has the same ELA as glacier #2, which is 3000 m elevation. Since it is in 
 steady state, the ELA must be halfway in elevation between the head of the glacier and its 
 terminus, or is at 2800 m. Once we know it has the same slope as glacier #2, we can 
 calculate its length too. Glacier #2 has a length of 8000 m and an elevation range of 1000 
 m, so its slope is 1/8. So, for this new glacier, we have from the definition  of slope: 
 ∆#

90
= L%%M

90
= 4

N

OPQR!S
T⎯⎯⎯V 𝐿% = 8 × 400	m = 3200	m. 

 
b. You don’t know the thickness of this new glacier, but using what you know about 

glacier #2, estimate this glacier’s response time and sensitivity.  
  
 We can estimate the glacier’s response time and sensitivity using the same process as for 
 number 1.  
 

 New Glacier:  

𝑏) =
𝑑𝑏
𝑑𝑧 ∆𝑧 = 8

m/yr
km × −0.2	km = −1.6	m/yr	 

𝜏 = −
𝐻%
𝑏)
= −

160m
−1.6 myr

= 100	yrs 

𝑑𝐿
𝑑𝑏 =

𝐿%
𝑎%
=

3200m
1.6	m/yr = 2000

m
m/yr = 2

km
m/yr 

 where we have assumed the glacier is the same thickness as glacier #2. This is probably 
 not the best assumption, even if it is the simplest. A much better assumption might be to 
 scale the glacier’s thickness by the relative area of the glacier, as the area determines the 
 total flux that much be conserved (accumulation above the ELA, ablation below the 
 ELA). If we make this assumption, this new glacier is only 64m thick. And the response 
 time and sensitivity would be:  

𝜏 = −
𝐻%
𝑏)
= −

64m
−1.6 myr

= 40	yrs 

𝑑𝐿
𝑑𝑏 =

𝐿%
𝑎%
=

3200m
1.6	m/yr = 2000

m
m/yr = 2

km
m/yr 

 
c. Given what you know about ice dynamics, explain why you think this estimate is 

likely an over or under estimate. You don’t have to solve for the thickness, but 
explain the physical basis for your answer.  
*hint: think about last homework on kinematics and dynamics 

  The assumption of the same thickness as glacier #2 is clearly a vast overestimate,  
  as this glacier has a much smaller accumulation area and the same surface slopes,  
  so smaller balance fluxes would be needed to evacuate the accumulated mass. A  
  better assumption would be to scale by area as we just did, and then it’s easy to  



  see that this glacier is most likely to respond to climate change in an identical way 
  to glacier #2, despite its different size and terminus ablation rate (the geometry  
  would compensate for these differences to reach a steady state)!! 
 

II. Glacier Transient Response to a Change in Climate  
 
The simplest model for transient response is exponential (as discussed in reading and 
homework). The transient length solution for trend in mass balance (𝑏̇ ≡ !"

!)
) starting at t = 0 is:  

𝐿Y(𝑡) =
𝐿%
𝑎%
𝑏̇[𝑡 − 𝜏\1 − 𝑒^)/_`a 

where 𝑎% is the ablation rate at the terminus and 𝜏 is the glacier’s response time. 
 

1) If glaciers 1—3 are subject to the same trend of -0.005 (m/yr)/yr, after 100 years how far 
out of equilibrium are they? (solve for the length difference between transient and 
equilibrium responses).  
 
This first problem is mainly “plug and chug”. For each glacier, we have (using the values 
from part I:  
 

 Glacier 1:  
• The total change in length (total length change in response to this balance 

trend is:  

   𝑑𝐿 = !9
!"
× 𝑑𝑏 = 1000 M

b
cd
× −0.005

b
cd

ef
× 100	yrs = −500	m 

• The change in length after 100 years is 

𝐿Y(100	yrs) =
8000	m
8 myr

× −0.005

m
yr
yr ×

g100	yrs	 − 10	yrsh1 − 𝑒^
4%%	efi
4%	efi 	jk = −450	m 

so this glacier is committed to 50 m additional retreat 100 years after the trend in 
mass balance started before a new equilibrium (steady state) is reached. 

 
 Glacier 2:  

• The total change in length (total length change in response to this balance 
trend is:  

   𝑑𝐿 = !9
!"
× 𝑑𝑏 = 2000 M

b
cd
× −0.005

b
cd

ef
× 100	yrs = −1000	m 

• The change in length after 100 years is 

𝐿Y(100	yrs) =
8000	m
4 myr

× −0.005

m
yr
yr ×

g100	yrs	 − 40	yrsh1 − 𝑒^
4%%	efi
L%	efi 	jk = −630	m 

so this glacier is committed to 370 m additional retreat 100 years after the trend in 
mass balance started before a new equilibrium (steady state) is reached. 

 
 
 
 
 



 Glacier 3:  
• The total change in length (total length change in response to this balance 

trend is:  

   𝑑𝐿 = !9
!"
× 𝑑𝑏 = 1000 M

b
cd
× −0.005

b
cd

ef
× 100	yrs = −500	m 

• The change in length after 100 years is 

𝐿Y(100	yrs) =
2000	m
2myr

× −0.005

m
yr
yr ×

g100	yrs	 − 37.5	yrs h1 − 𝑒^
4%%	efi
lm.n	efi	jk = −325	m 

so this glacier is committed to 175 m additional retreat 100 years after the trend in 
mass balance started before a new equilibrium (steady state) is reached. 

 
2) Is the difference due to their different response times or different sensitivity? To find out, 

modify your expression for equilibrium sensitivity from part I so that it expresses the 
equilibrium response to a trend as a function of time. Then, divide the transient response 
(above) by the equilibrium response to get an expression for fractional adjustment.  
 
To find the fractional length adjustment, we simplify divide the transient length solution 
by the total length adjustment (or the total length change), which is you note the 
calculation above is symbolically given by:  

𝑑𝐿 =
𝑑𝐿
𝑑𝑏 × 𝑑𝑏 =

𝐿%
𝑎%
× 𝑏̇ × 𝑡 =

𝐿%
𝑎%
𝑏̇𝑡 

Dividing the transient length solution by this term gives:  

𝐿Y(𝑡)
𝑑𝐿 =

𝐿%
𝑎%
𝑏̇[𝑡 − 𝜏\1 − 𝑒^)/_`a

𝐿%
𝑎%
𝑏̇𝑡

= 1 −
𝜏
𝑡
\1 − 𝑒^)/_` 

 as the fractional adjustment of a glacier at any given time after the start of a trend. 
 

 
3) What does it depend on? What is it for each glacier, after 100 years? 

 
This expression depends only on the time since the trend in mass balance started and the 
characteristic response time of the glacier (so there is an implicit dependence on the 
characteristic thickness and terminus mass balance). For each glacier, we have:  
  
Glacier 1:  

𝐿Y(𝑡)
𝑑𝐿 = 1 −

𝜏
𝑡 o1 − 𝑒

^)_p = 1 −
10	yrs
100	yrsh1 − 𝑒

^4%%	efi4%	efi 	j = 0.9 

 Glacier 2:  
𝐿Y(𝑡)
𝑑𝐿 = 1 −

𝜏
𝑡 o1 − 𝑒

^)_p = 1 −
40	yrs
100	yrsh1 − 𝑒

^4%%	efiL%	efi 	j = 0.63 

Glacier 3:  
𝐿Y(𝑡)
𝑑𝐿 = 1 −

𝜏
𝑡 o1 − 𝑒

^)_p = 1 −
37.5	yrs
100	yrs h1 − 𝑒

^4%%	efilm.n	efi	j = 0.65 

Note that these values are the same as those you would get from using your solution from 
problem 2 above dividing the change in length after 100 years by the total length change. 



4) Now, consider two more glaciers. We don’t know their mass balance gradients or 
sensitivities. But we do know their response times (10 and 50 years), and have observed 
both retreat 800m in the last 100 years. If we again assume a mass balance trend started 
100 years ago, estimate how far each of these glaciers would retreat if the mass balance 
trend stopped today.  
 
We can calculate their fractional retreats.  
 
For the first glacier:  

𝐿Y(𝑡)
𝑑𝐿 = 1 −

𝜏
𝑡 o1 − 𝑒

^)_p = 1 −
10	yrs
100	yrsh1 − 𝑒

^4%%	efi4%	efi 	j = 0.9 

and then 

𝐿Qr = 𝑑𝐿 =
𝐿Y(𝑡)
0.9 =

800m
0.9 = 890	m 

so an additional 90 m of retreat would occur if the forcing stopped today.   
 
For the second glacier:  

𝐿Y(𝑡)
𝑑𝐿 = 1 −

𝜏
𝑡 o1 − 𝑒

^)_p = 1 −
50	yrs
100	yrsh1 − 𝑒

^4%%	efin%	efi 	j = 0.57 

and then 

𝐿Qr = 𝑑𝐿 =
𝐿Y(𝑡)
0.57 =

800m
0.57 = 1400	m 

so an additional 600 m of retreat would occur if the forcing stopped today.   
 
These glaciers have characteristic times scales that are similar to the local glaciers in the 
Pacific Northwest. The first glacier (with the shorter characteristic timescale) might 
represent a glacier on a big volcano (like Mt. Rainer or Mt. Baker), and the second 
glacier (with the longer characteristic timescale) might represent a valley/cirque glacier in 
the North Cascades. So the glaciers on the Cascade volcanoes are likely much more 
closely adjusted to their climate due to their ability to respond rapidly to a climate 
change. The glaciers in the North Cascades are likely to be more out of equilibrium and 
have more committed retreat.  
 
Finally, please note that this is the simplest model, which has some known issues; 
namely, the model assumes the terminus starts responding immediately (exponential 
decay) and that mass balance rate at the terminus is fixed in time, when it would really 
change as the glacier’s length changes. More complex models show a spin-up phase of 
retreat, that is due to the time delay between the forcing and the thickness changes that 
are necessary to drive flux changes and advance/retreat. This would slow the response of 
the glacier, increasing the lag between the glacier’s current length and its new 
equilibrium length, and thus also increasing disequilibrium.  
 
 


