Mountain glacier responses to climate
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Lillian Glacier, Olympic National Park
http://www.nps.gov/olym/learn/nature/glaciers.htm

e what happened here?

e how fast?

e how is the story alike/different for other glaciers?

e Wwhat are some simple tools we can apply to these questions?
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- ablation > accumulation
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accumulation > ablation

Mass-balance: comparing inputs to outputs

ablation > accumulation

\’ 1
Length changes:

response to imbalance




Measuring mass balance

Traditionally done with boots on the ground

o Mass balance over some time period is measured in a few places and
extrapolated to whole glacier
o Assume surface processes dominate (snowfall, surface melt)

accumulation > ablation

ablation > accumulation\_‘

Typically, a single glacier-wide value is reported
o Units: meters water equivalent / year
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Mass-balance:

USGS photos: https://pubs.usgs.gov/fs/2009/3046/

Length:

Mass balance rate

(m water equiv. / year)

[ South
- Cascade

6

4

2

0
-2
4t

1960 1970 1980 1990 2000 |

\ Balance Year



https://pubs.usgs.gov/fs/2009/3046/
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Mass-balance:

(m water equiv. / year)
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Length: Why do these records look so different?
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Basic glacier length response

Initial state: in equilibrium
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Equilibrium line



Basic glacier length response

Positive change in mass balance
- now we're out of balance (gaining mass)

I(b+Ab)da¢O
A

accumulation zone "ablation zone !

T

Equilibrium line

NOTE we're defining this to be a persistent change; not seasonal or yearly anomaly



Basic glacier length response

Positive change in mass balance
- Glacier advances, adding to ablation area

\ + Ab

" - g . bterminus
.accumulation zone ablation zone :
T B |
Equilibrium line
Balance is restored when ~ Ab X L = — AL X bterminus

L+M (b+Ab)da=0



Basic glacier length response

Negative change in mass balance
-(losing mass)

. accum. zone . ablation zone .

T

Equilibrium line



Basic glacier length response

Negative change in mass balance
- glacier retreats, reducing ablation zone

! AL

Equilibrium line



glacier’'s equilibrium sensitivity: AL /Ab

1
: accumulation zone : ablation zone

--: " accum. zone ' ablation zone
Equilibrium line T

Equilibrium line

That is, how much must ablation area grow or shrink to restore mass balance?

AbXL=ALX D terminus
| (b+Ab)da=0
A+AA



glacier’'s equilibrium sensitivity: AL /Ab
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That is, how much must ablation area grow or shrink to restore mass balance?
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glacier’'s equilibrium sensitivity: AL /Ab

\

1
i accumulation zone '

Equilibrium line

ion zone '
| 5

Equilibrium line

That is, how much must ablation area grow or shrink to restore mass balance?

this depends on:
- mass balance gradient

- Glacier geometry (especially slope)

(how much advance is needed to
reach down into high ablation rates?)
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glacier’'s equilibrium sensitivity: AL /Ab
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Equilibrium line Equilibrium line

Equilibrium response to climate variations can be largely constrained by geometry
(how does glacier drape itself over the landscape and sample the local climate?)

Ok, easy enough, but how do these adjustments happen in time?



glacier’'s equilibrium sensitivity: AL /Ab

+ Ab

: accumulation zone i ' « _accum. zone . Ii——
o T I B T [

Equilibrium line Equilibrium line

Equilibrium response to climate variations can be largely constrained by geometry
(how does glacier drape itself over the landscape and sample the local climate?)

Ok, easy enough, but how do these adjustments happen in time?

How simply can we start?

INnputs .

What would we want to know about the reservoir? Dynamics

Outputs




Typical mountain glaciers have ~decade — century "memories’

Johanneson-Raymond-Waddington timescale (1989): | T = -H/bt

e valley geometry, climate, and ice dynamics Inputs

>
are represented in H and b Outputs
>




Typical mountain glaciers have ~decade — century "memories’

Johanneson-Raymond-Waddington timescale (1989): | T = -H/bt

e valley geometry, climate, and ice dynamics Iipuits ||
are represented in H and b Outputs,
Longer response times Shorter response times
Thicker ice Dry, cold climates High accumulation rates Large elevation spans
(— small by) (—large b:) (—large b:)
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Typical mountain glaciers have ~decade — century "memories’

Johanneson-Raymond-Waddington timescale (1989): | T = -H/bt

e valley geometry, climate, and ice dynamics Inputs

>
are represented in H and b Outputs
>

What other natural systems have characteristic time scales”
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lllustrating response times with idealized glaciers

T =97 years

T =25 years

2 4 6 8 10 12 14
Distance (km)

o

e Constant width
e Constant bed slope

e Simple climate-mass balance relationship
- linear increase with elevation
- changes in climate (T or P) produce
uniform mass balance anomalies over the glacier

Ab = AP - u(AT)

T

melt factor (0.5 m /yr/°C)




lllustrating response times with idealized glaciers

e Constant width

25
E T =57 years e Constant bed slope
S 27 e Simple climate-mass balance relationship
IS linear increase with elevation
5 1.5} .
I - = 25 years - changes in climate (T or P) produce
1 . . uniform mass balance anomalies over the glacier

2 4 6 8 10 12 14

Distance (km) Ab = AP - W(AT)

o

14

i 57-year response time

e Consider a step change in climate:
(instant 2°C warming at year zero) 10 |

€
* Both glaciers approach new equilibrium, | % 4|
but at different rates 58:

. - 6 - 25-year response time
¢ Also note different total sensitivity!
(why?) T
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lllustrating response times with idealized glaciers

[ South
- Cascade

e Ok, but we know climate doesn’t behave like that
¢ \What does a glacier do with year-to-year variability?
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lllustrating response times with idealized glaciers

e Ok, but we know climate doesn’t behave like that
¢ \What does a glacier do with year-to-year variability?

2 °C step-change Random variability in Temperature and Precipitation:
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Length (km)

Length (km)

57-year response time

(toy modél)

I 25-year response time

Length (m)

(Observed changes)

Glaciers have been responding to natural
variability and an anthropogenic trend
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Centennial glacier retreat as categorical evidence

of regional climate change
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Elevation (km)

T =57 years

Back to toy model: warming signal + variability
- trend of 1°C per century, no trend in snowfall

T =25 years

NOT simulating a specific glacier, but these are plausible values
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25
T =57 years

Back to toy model: warming signal + variability
trend of 1°C per century, no trend in snowfall
NOT simulating a specific glacier, but these are typical values

Elevation (km)

T =25 years

0 2 4 6 8 10 12 14
Distance (km)

0.5 |

[ [ [
— 25-y/€AI MeMory

57-year memory

Anomalies

1800 1900 2000 2100 2200

-1

Length change (km)
)
(&)

1800 1850 T1900 1950 2000T 2050 2100 2150 2200 2250
To

Onset of warming day, AT=1.4°C

Thought experiment: what would happen it we stopped warming today?
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€ r=57 years Back to toy model: warming signal + variability
| trend of 1°C per century, no trend in snowfall

v [ 7=25years NOT simulating a specific glacier, but these are typical values

0 2 4 6 8 10 12
Distance (km)

14

05 [ [ [ [
— 25-y/€AI MeMory
n
S57-year memory Q

£ s

C
Géj <
s -0.5 ‘ ‘ ‘ ‘
C 1800 1900 2000 2100 2200
O
=
&
g 1 |
—1

| | | | | | | |
1900 1950 2100 2150 2200 2250

1800 1850 T

Thought experiment: what would happen it we stopped warming today?

14
I 57-year response ' .
& time Random variability:
15 -
10 | £ 57-year response time
. _ i‘, 14 +
Step change: & :
E 8t g 13 ¢
(@] —
o 12
= 8 -
6+ . 25-year response time
25-year response £
time <
4r D6l
9
5
2 1 1 I
0 100 200 300

Years

Onset of warming

2000 T 2050
To

day, AT =1.4 °C




2.5

Elevation (km)

T =57 years

Back to toy model: warming signal + variability
trend of 1°C per century, no trend in snowfall

T =25 years

NOT simulating a specific glacier, but these are typical values
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Many glaciers are committed to additional retreat, even with no further warming



Length (km)

Temp. anomaly (°C)

13

12

11

10

o

oo

)\

o

transient responses

........ equilibrium length
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(equilibrium response)

e multi-decade memory means
that glaciers lag a warming trend

e difference between actual state
and equilibrium depends on
response time
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e Glacier can’t catch
up until warming
stops...



Lagging equilibrium response as a general principle

e Basic response of any system with memory

e This lag gets interesting when the trend hasn'’t lasted much longer than the memory

e Glaciers responding to ~a century of warming are in this sweet spot
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Takeaways

e Glaciers respond to mass-balance changes by
adjusting length to restore equilibrium:

N
‘ablation zone
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accumulation zone

Equilibrium line

* The timescale for these changes is ~decades for most mountain glaciers | T = -H/b;

* Glaciers respond with slow fluctuations to natural variability... %
e .. and lagged responses to gradual trends | @
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