Historical variability of glaciers

Lithograph from “Norway and its glaciers: visited in 1851” by James David Forbes
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Nigardsbreen, Norway “Nine farm glacier”



Historical variability of glaciers
Lithograph from “Excursions in the Alps 1842” by James David Forbes

Grossser Aletsch Glacier, 1842

Louis Aggasiz

J.D. Forbes
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Milutin Milankovitch

Imbrie amd Imbrie, 1979



Milutin Milankovitch (1879 - 1958)

“I do not consider it my duty to give an elementary education
to the ignorant, and | have also never tried to force others to
apply my theory, with which no one could find fault.”

“Such an assertion can only come from someone with
amazing courage, since he dares to write of things about
which he knows nothing.”

(Milankovitch, 1941)



Orbital parameters

« Earth’ s orbit varies over time due to influence of the
Sun, Jupiter, and the Moon.

« Eccentricity (ellipticity)
~100 kyr, 400 kyr

* Obliquity (tilt)
~41 kyr

* Precession (wobbly top)
~19, 23 kyr




Note also Kepler’ s law’ s

1. The orbit of every planet is an ellipse with the Sun at a focus.

2. Aline joining a planet and the Sun sweeps out equal areas
during equal intervals of time.

3. The square of the orbital period of a planet is directly
proportional to the cube of the semi-major axis of its orbit.

Johannes Kepler,
1571-1630

Are all a consequence of Newtonian gravitation
Principia 1687 (also calculus, laws of motion, tides, planetary masses, comets,
precession of equinoxes, eftc.)

zip round when close,
slow down when far away

Important for seasonally-
integrated aspects of climate



Insolation variations at 65N - Summer Solstice
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Insolation variations over the last 400,000 years
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Peak summer vs. Integrated summer insolation
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Raymo & Huybers, 2008

Which is more important for ablation?



Milutin Milankovitch (1879 - 1958)
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FIGURE §7. The secular march of the summer insolation for 65° North represented by latitudinal oscillations

(Milankovitch, 1941)
 Glaciations correspond to summer insolation minima...

Koppen and Wegner critical



What does an ice age look like?
» Reconstruction of land and sea ice 21,000 years ago

CLIMAP reconstruction



(Eastern Greenland
-Steve Porter)




Western Greenland




What does an ice age look like?

Puget sound lobe

Ralph Haugerud
Harvey Greenberg

25 miles







' / gt
“ N/'\

f /’/ﬂ, I -*«& I
7 :




Harvey Greenberg
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Inferring global ice volume in the past

® 180 isotopes
P g

® 180 isotopes

« fractionation of isotopes during evaporation and precipitation
favours light isotopes being transported to high latitudes.

» ocean becomes enriched in heavy isotopes.

* signal can be measured in ocean sediments.



Inferring global ice volume in the past

* proxy for ice volume over the last 2.5 million years
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The SPECMAP ice volume time series

Ice volume (s.d. units)
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« Composite stack of many 880 deep sea cores (~20)

Imbrie et al., 1984



The SPECMAP ice volume time series
and June insolation at 65N (upside down)
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e maximum correlation of -0.4
with a 6 kyr lag of ice volume behind insolation

* more ~100 kyr variability in ice volume than in insolation



What people say about this

* 6 kyr lag is due to dynamical response of ice sheets
* CO, leads ice volume by ~6 kyr
* Tropical temperature lead ice volume by ~6 kyr

=> CO,/SSTs force climate change

* S.H. temperatures lead ice volume by ~6 kyr
=> S.H. source of deglaciation mechanism

* It takes 6 kyr for climate signal to reach the N.H.
=> role of deep ocean/chemistry

BUT, ice volume is a bad climate variable...



Rate of change of ice volume

 d(volume)/dt more directly related to high latitude insolation
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Rate of change of ice volume

 d(volume)/dt more directly related to high latitude insolation
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* maximum correlation of -0.8
at zero lag



Rate of change of ice volume

 d(volume)/dt more directly related to high latitude insolation
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The role of CO,:
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Changes in CO, lead changes in ice volume...



The role of CO,:

The cross spectrum between CO2 and dV/dt ‘
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- Variations in melting precede variations in CO,!



Summary

« \Waxing and waning of global ice volume strongly controlled by
high latitude, northern hemisphere summertime insolation

(i.e., Milankovitch’ s original idea, sort of)

« CO2, tropical SSTs lag dV/dt - not the primary driver of variations
* Insolation trigger for collapse?
» Reason for deglaciation still unknown

« Changes the question from does orbital forcing affect global ice
volume (it does), to what causes the big deglaciations?



How an ice sheet works (roughly):

1. Force balance on a volume within ice sheet
Surface slope leads to pressure gradient

Ice

land ocean

Pressure gradient balances shear stress:

O, = f&pdz




How an ice sheet works (roughly):

2. lce responds to stress by deforming (creep flow)

Ice

land ocean

Glen’ s flow law: relates strain rate to applied stress

£ (~ @) = A(T) x 07
dz

Strainrate  oC (Stress

)3




How an ice sheet works (roughly):

3. Equilibrium state is a flux balance

Accumulation zone

ablation zone/ F(X)

land ocean

Steady state mass balance:

dh\ ¢ .
] = f (snowfall — melting) dx

0

Flux of ice x H’ x(

* ice flow is basically a very nonlinear diffusion equation



Accumulation
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Greenland - average accumulation ~30 cm/year.

Antarctica - average accumulation ~10 cm/year.

(desert <25 cm/yr)

Clausius-Clapeyron relationship:

* moisture content decreases exponentially with height.
 e-folding scale height at high latitudes ~ 2 km.
* most of Antarctica, Greenland are above this height.

As ice sheet grows, average snowfall decreases strongly
— strong negative feedback as ice sheet grows



Ohmura et al., 1996

Greenland

Ablation
VS.
Summer temperature
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Ablation

T

« Ablation rate oc summer temperature.

* Rule of thumb 1°C JJA = 1myr! melting. \

* |ce sheet margin has parabolic shape.

» Total ablation oC T3.

Ice sheets are very sensitive to summertime temperatures!



Ice sheet sensitivity: accumulation rate vs. ablation rate

Ice sheet sensitivity to accumulation and temperature

Summer temperature perturbation °C

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Annual accumulation rate m'i.nfr'1

* need a big accumulation rate change to offset a

small temperature change.

Contours
of ice sheet
length

(in km)



Ice volume response for different forcing periods

40 kyr

100 kyr

Time-5eries of Climate Forcing and lce Yolume
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Use insolation variations to force ice sheet model

Forcing
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Comparison of model dv/dt with model forcing
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* maximum correlation 0.4
at zero lag



Use insolation variations to force ice sheet model

plus noise
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Comparison of model dv/dt with model forcing

plus noise
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Conclusions

* Models and observations agree that rate of change of ice volume
Is directly related to insolation variations.
(up to 60% of variance)

* The Milankovitch hypothesis (formulated properly) does,
In fact, explain a lot about climate change, but noise
IS an important part too.

* |ce sheets are very nonlinear beasts.

* How do large ice sheets collapse?



