Sea Ice Lecture Notes ESS 431

Bonnie Light
Polar Science Center / Applied Physics Lab
bonnie@apl.washington.edu

11/26/18, 11/28/18

What is sea ice?

- Frozen ocean water
- Forms, grows, melts in the ocean
- Grows in winter, melts in summer, can melt completely or survive multiple years
- Typical thickness: "first-year" <= 1.8 m, 2-3 year old = 2 3 m, 6 year old ~ 5 m

Maximum and minimum climatology 1979-2000

Arctic

Antarctic

Image courtesy of the National Snow and Ice Data Center, University of Colorado

Northern Hemisphere Sea Ice Extent (1979-2018)

Passive microwave-derived (SMMR / SSM/I) sea ice area for the Northern Hemisphere January 1979 – November 2018

Image from https://www.ncdc.noaa.gov/snow-and-ice/extent/sea-ice/N/0

March Northern Hemisphere Sea Ice Extent (1979-2018)

- 0.4 million km² / decade
- 2.7 %

- 0.8 million km² / decade
- 12.5 %

WHY IS SEA ICE IMPORTANT?

1. Affects polar ecosystem, wildlife

- Important habitat for phytoplankton, zooplankton, Arctic cod, seals/walrus, polar bear
- Ice algae contributes 10 20%
 to Arctic primary production
- Effect of reduced ice cover uncertain

WHY IS SEA ICE IMPORTANT?

- 1. Affects polar ecosystem, wildlife
- 2. Affects people who live in polar regions (subsistence hunting, travel)

2007: Northwest passage open for first time in human memory

2008: Both Northern Sea Route and Northwest passage open for 1 week

WHY IS SEA ICE IMPORTANT?

- 1. Affects polar ecosystem, wildlife
- 2. Affects people who live in polar regions (subsistence hunting, travel)

3. Role in earth's climate

- How heat is absorbed / dissipated on earth determines climate
- Poles are earth's "heat sinks"
- Summer sunlight 24/7
- Ice extent, concentration, thickness matter
- Sea ice is thin (large area, small volume)

- Annual melt / freeze cycle produces large changes in areal coverage, surface properties
- Climate sensitivity

Change in climate \rightarrow change in ice Change in ice \rightarrow change in climate

SEA ICE AND CLIMATE

• Paleotemperature data indicate ΔT_a increased with increasing latitude, e.g., during last ice age:

$$\Delta T_a = 3 - 5$$
 °C at low, mid-latitudes $\Delta T_a = 8 - 10$ °C at high latitudes

- Suggests strongest indications of climate change would be in the polar regions
- Climate models predict similar pattern
- Atmospheric temperatures in the Arctic are warmest in 400 years
- Average temperature has risen at almost twice the rate as the rest of the planet during past few decades (ACIA, November 2004; ww.acia.uaf.edu)

Decadal surface temperature anomalies relative to 1951–1980 base period.

Hansen, J., R. Ruedy, M. Sato, and K. Lo (2010), Global surface temperature change, Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

"Polar amplification"

- heat at high latitude warms atmosphere, heat at low latitude goes to evaporation
- reduced sea ice cover allows for enhanced sea-air heat transfer
- loss of snow, ice increases heating → "ice albedo feedback"

ICE - ALBEDO FEEDBACK

- Ample sunlight
- Sea ice reflects 60-90% of the incoming solar radiation, ocean < 10%
- A slight warming of ocean or atmosphere ice extent decreases more ocean exposed increased solar energy absorbed

- This positive feedback process has the potential to amplify variations in climate

What is the difference between sea ice and lake ice?

- Sea ice forms from salty ocean water
- Lake ice forms from fresh water
- ⇒ What happens as warm water cools?

$\rho\text{-T}$ DIAGRAM FOR FRESH WATER

LAKE ICE FORMATION

ρ - T DIAGRAM FOR SALT WATER

SEA ICE FORMATION

- If S > 24.7 °/_{oo} then colder is denser
- Cooling water sinks away from cold surface
- Sea ice forms more slowly than fresh ice
- $T_f = -1.8 \text{ C for } S \sim 32 \text{ ppt}$
- Typically, top 100 150 m of ocean must be cooled to T_f for ice to form

T-S DIAGRAM FOR SALT WATER

Ice Growth

INITIAL ICE FORMATION

Frazil Crystals

- Initial freezing occurs at many points of nucleation within water column
- Needles and platelets of ice (3-4 mm diameter) float to surface to form slush

INITIAL ICE FORMATION

Frazil Crystals

- Initial freezing occurs at many points of nucleation within water column
- Needles and platelets of ice (3-4 mm diameter) float to surface to form slush

Grease Ice

- Ocean covered by grey, soupy mixture of frazil crystals which look "greasy"
- Forms solid ice cover when H is about 1 cm, if no wind or waves

INITIAL ICE FORMATION (continued)

Pancake Ice

- In presence of waves, grease ice evolves into flat, circular, rounded masses of semi-consolidated slush called "pancakes"
- Pancakes typically 0.3 to 3 m in diameter
- Wave motion can delay formation of solid ice cover until H is 10-50 cm

INITIAL ICE FORMATION (continued)

Congelation Growth

- Once solid cover forms, ice grows at the bottom due to heat conducted upward toward the colder surface - called *congelation growth*

SEA ICE STRUCTURE

Crystal Orientation

- Initially c-axes oriented randomly
- After 10 -20 cm congelation growth c-axes are horizontally-oriented
- Preferential growth of crystals with horizontal c-axes
- Crystals with horizontal c-axes grow downward up to 2 orders of magnitude more rapidly than those with more vertical c-axes
- "Geometric selection"
- Horizontal c-axes important to development of characteristic properties of sea ice

Skeletal Layer

- In sea water, delicate layer of thin platelets grows on prism faces perpendicular to c-axis

- Platelets are parallel, form a single crystal. Thickness ~ 0.5 mm and spacing of

1-2 mm.

- No skeletal layer in fresh water ice, so salt must be important
- Similar phenomena observed when metals solidify ("constitutional supercooling")

http://www.mcs.vuw.ac.nz/Main/ResearchSpotlightOnSealceGrowth

Constitutional Supercooling

 Rejection of salt produces steep <u>salinity gradient</u> in the boundary layer F_s ↓

 Temperature at ice-water interface must be at freezing (for high S), causing a temperature gradient

$$F_h \uparrow$$

- Heat diffusion >> salt diffusion ⇒ region of supercooling
- Ice projecting into supercooled region will grow faster than planar interface ⇒ platelet formation
- Length and spacing of platelets act to minimize amount of supercooling ahead of growing interface
- Mathematical theory describes observed platelet patterns

SEA ICE SALINITY

- Amount of salt trapped in the ice described by "ice salinity" (S_i)

$$S_i = \frac{\text{mass of salt}}{\text{mass of ice} + \text{mass of brine}} \cdot 10^{3} \, \text{°}/_{\text{oo}}$$
 (ppt)

- S_i directly related to rate of ice growth
- Faster the growth, the greater the amount of salt trapped
- S_i should be <u>high</u> when ice is thin and decrease as ice becomes thicker

SEA ICE SALINITY

- Average salinity decreases as ice ages, indicating loss of salt to ocean
- Dramatic change as ice goes from FY to MY

BRINE INCLUSIONS

- Bridging between platelets traps pockets of brine ($d \approx 0.05 \text{ mm}$)
- Brine pockets form in vertical strings marking boundary between platelets
- Salinity in brine pockets (S_b) independent of original water salinity because brine must be at salinity-determined freezing point

$$S_b = \frac{\text{mass of salt}}{\text{mass of brine}} \cdot 10^3 \, \text{°/}_{\text{oo}}$$

FREEZING EQUILIBRIUM

- Changes in T_i cause melting or freezing in brine pockets, causing S_b to change until the brine is in freezing equilibrium with surrounding ice
- These changes are independent of S_i

FREEZING EQUILIBRIUM

- Changes in T_i cause melting or freezing in brine pockets, causing S_b to change until the brine is in freezing equilibrium with surrounding ice
- These changes are independent of S_i

FREEZING EQUILIBRIUM

DESALINATION MECHANISMS

Gravity Drainage

- thermal and mechanical stresses form vertical cracks along brine pocket strings
- result in vertical channels once H > 40 cm
- brine in the interior is colder and denser than brine near the bottom, causing downward drainage

Flushing

- sea ice becomes very porous during summer
- surface meltwater produces hydrostatic pressure forcing low salinity meltwater into upper part of ice and a loss of higher salinity brine through the bottom of the ice

SEA ICE STRUCTURE

250 μm Light et al., 2003

FRACTIONAL BRINE VOLUME

Presence of brine in sea ice alters essentially all its physical properties, making them very sensitive to temperature especially when ice becomes warm

Brine Volume

Define fractional brine volume (v_b) as: $v_b = \frac{V_b}{V_i} \cong \frac{\rho_i S_i}{\rho_k S_k}$

PHYSICAL PROPERTIES OF SEA ICE

- 1. Thermal
- 2. Mechanical
- 3. Electromagnetic
 - a. Optical
 - b. Infrared
 - c. Microwave
- 4. Thermodynamic growth
- 5. Dynamic

Thermal Properties

Melting/Freezing Point

No single melting or freezing point because any change in T_i produces internal melting or freezing in the brine pockets

-15 °C

-5 °C

-2 °C

Latent Heat of Fusion: Heat required to melt a unit volume of sea ice

$$L_i = L_o(1 - v_b)$$

- L_o is the latent heat of fusion of pure ice (333.55 J/g)
- For new ice, L_i typically 0.6 L_o
- For thick multiyear ice, L_i typically 0.9 L_o

Thermal Conductivity

Determines rate of heat conduction through the ice

$$F_c = k \frac{\partial T}{\partial z}$$

$$T = -15 \text{ C}$$

$$\uparrow F_c$$

$$T = -1.8 \text{ C}$$

Brine pockets act as thermal buffers to retard the conduction of heat and the warming or cooling of the ice

$$k_{\text{ice}} = 2.4 \text{ W/mC}$$

 $k_{\text{brine}} = 0.6 \text{ W/mC}$ factor of 4

What happens to k_{ice} with increasing brine volume?

- k_{ice} varies by 10-20% in multiyear ice
- k_{ice} varies by 50% in warm first-year ice

Specific Heat: Heat required to raise 1 g of sea ice 1 °C

$$c_{i} = c_{o} + aT_{i} + \frac{bS_{i}}{T_{i}^{2}}$$

c_o is the specific heat of pure ice
a and b are constants
c_i can vary by nearly two orders of magnitude

Mechanical Properties

- As T_i increases, the ice becomes more porous due to increased ν_b
- This causes the ice to become weaker
- All mechanical properties are thus sensitive to v_b , i.e. to T_i and S_i
- Empirical data show that <u>compressive strength</u> (σ_i) can be related to v_b by $\sigma_i = \sigma_o (1 Av_b^{0.5})$

where σ_0 is the compressive strength of pure ice and A is a constant

- For engineering purposes, $\sigma_i \rightarrow 0$ as $v_b \rightarrow 30\%$
- In nature, ice can still retain integrity until $v_b \cong 60\%$, even though it may have negligible compressive strength
- Mechanical properties are directional
 - stronger under vertical stress
 - important for offshore structures or load-bearing capacity of the ice

Idealized picture of sea ice structure

ELECTROMAGNETIC PROPERTIES (OPTICAL)

- Interaction with solar (shortwave) radiation
- Shortwave (SW) radiation is one of largest components of surface heat balance
 - 300 nm (UV) 4000 nm (IR)
 - roughly half of the energy is visible, near UV (300 700 nm)
 - important for calculating mass changes
 - heat storage in the ice and upper ocean

Albedo

$$\alpha = \frac{\text{reflected SW}}{\text{incident SW}}$$

α depends on

- ice thickness and type
- snow cover
- presence of liquid water near the surface
- examples: .80 .90 cold, snow-covered ice
 - .65 .75 melting, snow-covered ice
 - .55 .65 clean, melting multiyear ice
 - .35 .60 cold, thin (20<H<100 cm) first-year ice
 - .45 .55 melting first-year ice
 - .15 .45 melt ponds
 - .10 .35 new (H<20 cm) ice
 - .07 .10 open water

Spatially-averaged (i.e. measured by aircraft or satellite) albedos typically reduced to 0.45-0.50 during summer due to presence of melt ponds

Spectral Albedos

- $\alpha(\lambda)$; where λ = wavelength
- Important for interpreting satellite measurements and for calculating SW energy absorption and transmission within the ice
- Relatively constant between 400-600 nm
 reason why snow and drained ice appear white
- Decreases steadily at near infrared wavelengths

Spectral Albedos

Extinction Coefficient (K_{λ})

- Needed to calculate:
 - SW energy absorbed by ice
 - SW energy transmitted through ice (mixed layer heating, photosynthesis)
- Beer's Law: F_z (λ)= F_0 (λ) $e^{-\kappa_{\lambda}z}$ where F_0 (λ) is the net SW flux at the surface
- The larger the K_{λ} , the less light penetration
- Averaged over λ :

 $K = 0.5 - 1.5 \text{ m}^{-1}$ for sea ice

 $K = 15 \text{ m}^{-1} \text{ for dry snow}$

- Relatively constant between 400-600 nm
- Increases roughly an order of magnitude between 600-800 nm
- Visible light (particularly blue) penetrates deep into ice
- Most near-infrared energy is absorbed close to surface

Beer's Law equation predicts:

- Field data from 1940-70s showed very little bottom melting during summer
- Data from late 1990s: total bottom melting ≅ total surface melting
- Data from 2000s indicates bottom melt in some areas > surface melt
- Average summer ice thickness **H** decreased from 2.5 to 1.5 m between these two earlier periods, allowing more SW radiation to be transmitted to ocean through ice
- Figure above points to a strong positive feedback between decreasing H and increasing bottom melting
- This "ice-transmittance" feedback is likely contributing to Arctic sea ice loss