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Overview

Evidence for whole mantle convection

Model of whole mantle convection reconciling
geophysical and geochemical data — Transition
/one Water Filter Model

Evidence for the Transition Zone Water Filter Model
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Seismic Tomography
from Grand (1997)

Figure 2. Comparison of P- and S-wave models, showing variations In seismic velocity at given depths 2700 km depth

through the lower mantle. Numbers at the sides of the images are the maximum anomaly in terms of B

percentage difference from mean velocity. Blue indicates faster than average, and red Indicates slower FARALLON SLAB ()
than average. The white regions have no significant data sampling.
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Figure 6. Cross sections through the model for P and § wave velocities. Red and green lines represent
past boundary positions between Pacific seafloor and American continents since 120 Myr (computed
from present boundary positions with rotation poles data in the hot spots reference frame). Black lines
represent different cross sections made inour Frand Vs models; different points along the lines represent
past margin positions between 120 Myr and 0 Myr ago for given points in the present-day. Arrows
represent velocities and directions of convergence at different ages, computed in the hot spots reference
frame.
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Figure 5. P wave and § wave velocity perturbation maps with respect to the akl135 reference model in the layers: 750 -
850 km, 10001150 km, 13001450 km, 17501900 km, 22002350 km, and 26502890 km. Cells that are not resolved

are left white.

Ren et al., 2007
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Fig. 2. Three-dimensional view of deep plumes present in our tomographic model. Maps are 40° by

40°, appropriately scaled with depth. Note the vertical exaggeration. The depth spacing changes at
1000 km. The color scale is the same as in Fig. 3. Two-letter identifiers show hotspot locations.
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Fig. 1. Vertical average over the lowermost 1000 km of the mantle of the relative velocity perturbation 3v,/v,. The averaging emphasizes features that
are continuous with depth. Map has been wrapped around to have complete views of both the Atlantic and the Pacific oceans.



Transition Zone Water Filter




Where’s the water at?

MORBs=>» upper mantle is 0.01wt% water
OIBs=>» lower mantle is 0.05 wit% water
Mantle near subduction zones is 0.1 wit% water

Water solubllity of tfransition zone minerals=>
Transition zone is 0.1 — 1.5 wit% water

Bulk Water estimates=» Transition zone is 0.2 — 2%
water

Water weight in transition zone is higher than
saturation limit in upper/lower mantle, but lower
than saturation limit of fransition zone minerals.
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Super Saturated Olivine
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Extra water promotes melting
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Lack of water results in
little or no melting
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Lithosphere
‘ “damp,” trace element rich OIB
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Similar story for Archaean mantle resulted in non-depleted crust formation.



Transition Zone Water
Filter

Heat and silicates are transferred through the whole
mantle=> whole mantle convection

“Missing” water is tfrapped in the transition

Trace elements are filtered out and only circulate In
the lower mantle.

Melt layer of 5-10 km is hard to image seismically.

Need better understanding of material properties
(I.e. water capacity of mantle rock).
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Evidence for Water Filter Theory

Slow velocity layer just above 410-km discontinuity
Data filtered using 4 time periods, with 95% confidence
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B. Tauzin, E. Debayle, G. Wittlinger, Seismic evidence for a global low-velocity layer
within the Earth’s upper mantle, Nature Geoscience 3, 718-721 (2010)



M

odeling Receliver Function Observations
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¢,d, Observed RFs (c) for the 89 stations of Fig. 1a and synthetic
waveforms (d) computed using the same LVL thickness
distribution as in the data in ¢. Each seismic trace (¢,d) is made
of the juxtaposition, from left to right, of the 10, 7, 5 and 3 s low-
pass filtered RFs at the stations, aligned on the ‘410" waveform
and ordered by increasing LVL thickness. Black crosses
indicate the top of the LVL.



Sampling and Alternate Explanations

Igneous Subduction
i Hotspot
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SR Explanations:

*Few in subduction zones — dehydration

‘_ *Few in high temperatures zones - affect
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Hier-Majumder, S., Ricard, Y. & Bercovici, D. Role ¢
of grain boundaries in magma migration and .

storage. Earth Planet. Sci. Lett. 248, 735749 (2006).

- “grain boundary tension may prevent simple
gravitational settling of a heavy melt into a thin o
completely decompacted layer, and may give rise to a
thicker boundary layer.”

- This tension is modulated by grain size and matrix

viscosity, which can vary by orders of magnitude. I ——
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Previous Studies
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Former studies showing slow velocity layer above 410-km discontinuity



Summary

There is clear evidence for slab subduction to the deep mantle

Theory of water filter above 410-km discontinuity incorporates
layered convection-like observations

Worldwide evidence for thin, slow velocity layer above 410-
km discontinuity is emerging
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