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Notes on Seismic Tomography  1/18/16 
 
Further reading:   
1) Look at the pdf tomography tutorial by Simons that is on the web. 
2) Read Fowler, Section 4.1 (Waves through the Earth: pp 100-111) and 4.2.7 (The 
observations of earthquakes: seismic phases: pp 126-130)  
 
Sources 

Earthquakes 
Nuclear Explosions 
Glaciers 
Atmospheric 
Oceanic 
Volcanic 
Biologic 
Anthropogenic 
… 

 
Structure 

Tomography - produces blurry 3D images of shear and compressional wave speed 
inside the earth 

Scattering - produces estimates of steep gradients or discontinuities in wave speeds 
and density 
 
Body Waves travel through the body of the earth 
P – Primary or first arriving waves (Compressional wave: particle motion in the direction 
of the ray path) 
S – Secondary or second arriving wave (Shear wave: particle motion is perpendicular to 
the direction of the ray path. A shear wave has two polarizations, SH is horizontal motion 
and SV is perpendicular to the ray and SH) 
Measure arrival times, amplitudes 
 
Surface Waves travel horizontally, are trapped at the free surface, amplitude decays with 
depth 
Love Waves: particle motion is horizontal and perpendicular to propagation direction 
Rayleigh Waves: elliptical retrograde particle motion in vertical plane containing the 
propagation direction 
Measure dispersion (each frequency travels at a different speed because it has a different 
sensitivity to structure as a function of depth). 
 
Normal Modes are excited by  big earthquakes.  These are standing (not traveling) 
waves that oscillate at fixed frequencies called eigenfrequencies, similar to the 
fundamental mode and overtones of a guitar string.  The longest period mode is about 
1000 s. 
Measure eigenfrequencies. 
 



 

 2/4 

 
Tomography 
In a nutshell, the tomography problem is one of determining the wavespeeds (P and or S) 
as a function of three dimensions in the interior of  Earth based on seismograms that 
record ground motion at the surface of Earth.  We call the unknown wave speeds the 
Model and the seismograms the Data.  Various physical principles of elasticity and wave 
propagation allow us to calculate Data we would observe from  a given  Model.  This is 
known as the Forward Problem.  Inverse theory allows us to invert the Forward problem 
to determine a model that is consistent with the data within its errors and to characterize 
the range of models that are consistent with the data.  
 
The three key steps to any tomography problem are: 
1) Linearize the forward problem - typically the data depend on the model in a weakly 
nonlinear fashion, so we make an approximation to the forward problem that is nearly 
linear in the vicinity of a starting model. 
2) Discretize the model - The model is a continuous function of 3-D space making it an 
infinite dimensional space.  It is convenient to parameterize the model, typically either by 
dividing earth up into a finite number of blocks, expanding the velocity model in global 
basis function such as spherical harmonics, or in local basis functions such as splines. 
3) Regularize the inversion -  Typically there are not enough data to fully determine the 
value of each of the parameters of the model so assumptions need to be made.  This is a 
key part of inverse theory.  Common solutions are to "find the smallest model that fits the 
data to with their uncertainties" or  "find the smoothest model that fits the data to with 
their uncertainties" or "find the model that is closest to some preferred model and fits the 
data to with their uncertainties".  The answers to these three questions should be similar 
where the data coverage is good, but will be very different where the model is not well 
constrained by the data.   
 
Data used to locate earthquakes and determine earth structure 
Arrival times of P and S waves 
Phase and group velocities of surface waves 
Eigenfrequencies of Normal modes 
 
Model represents the unknown features of the earth that we want to know. 
 
Vs(r, θ, φ)  =  sqrt(µ/ρ)  = shear wave velocity 
Vp(r, θ, φ)  =  sqrt((κ + 4/3µ)/ρ) = compressional wave velocity 
 
µ  =  shear modulus 
ρ  =  density 
κ  =  incompressibility 
 
Forward Problem is to calculate Data from a Model, for example what travel time 
would I get for a given 3D model of the earth.  This represents the Physics of wave 
propagation.  Travel time tomography typically relies on "ray theory" which is an 
asymptotic theory valid at high frequencies (but not valid at low frequencies).  A hot 
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topic now is the development of a higher-order theory known as banana-donut theory, but 
that is beyond the scope of this course.  
 
Ray theory is based on the premise that the travel time (time for a wave to go from a 
source fixed in space to a fixed seismometer) is the integral of 1/v along a ray path.   v is 
the P or S wave speed depending of the wave of interest.  A ray path is the path along 
which the travel time is a minimum (or maximum).  The hardest part of doing 
tomography, aside from collecting the data, is calculating the ray paths.   
 
The first equation below defines the travel time through a velocity (v), the second gives 
the travel-time anomaly defined as the travel time through some perturbed model v+δv 
minus the travel time through a reference model v.  The final equation is a Linearized 
version.  The first step invokes Fermat's Principle, which is key to the whole process.  
Fermat's Principle states that for two points A and B on a ray, the ray itself  is a path 
along which, in the velocity field v(x), the travel time from A to B is stationary.   This 
means that the derivative of travel time with respect to any small perturbation to the path 
is zero, which is important because it means that we get the correct answer (to first order) 
even if we have small errors in the ray path.  

T = 1
vray
∫ ds  

δT = 1
v+δvray(v+δ v)

∫ ds− 1
vray(v)

∫ ds    exact expression for travel-time anomaly 

δT = 1
v+δvray(v)

∫ ds− 1
vray(v)

∫ ds  note that first integral is along ray for the reference model v 

 

δT ≅ −dv
v2ray(v)

∫ ds   Linearized Forward Problem (δT depends linearly on δv) 

 
 δT ≅Gδv .   δT is vector of travel times, δv is a vector of parameters 

describing velocity, model  G is a large matrix that 
approximates the integral expression above.   

 
 
The bottom line is that we now have an equation that allows us to calculate the travel-
time anomaly that you would get if the velocity was perturbed by some δv. 
 
The inverse problem is to determine δv from the known data δT: 
 
δv =G−1δT  This is great if the matrix G is invertible, but it seldom is.  The problem of 
regularization is to find an approximation to  the inverse of G as described in the 
Regularization discussion above.   
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Simple example of Fermat's principle.  In a homogeneous medium with wave speed v, 
the time from A to B through C is T = 2 d / v  = 2/v (L2+h2)1/2 
The value of h that corresponds to a ray path is where dT/dh = 2/v (L2+h2)-1/2  h =0;  This 
occurs at h=0, so the straight line (h=0) is a ray path.   
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