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Use observations of surface deformation to
determine the density and rheologic
structure of the mantle.

Geoid/Free-air gravity

Dynamic topography

Post-glacial rebound

Plate motions




Outline

T'he Observations
The Game (Methods)

e Robust Constraints on Mantle
Structure.

 Beyond the Layered Mantle
— Recent Results
— Rheology
— Challenges

e Conclusions
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e Measured by modelling satellite orbits.

— Spherical harmonic representation, L=360.
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From, http.//www.vuw.ac.nz/scpsstudents/phys209/m0dules/m0d8.htm



Spherical Harmonics

Zonal (m=0) Sectoral (m—L)
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Free-Air Gravity
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e Derivative of geoid (continents)

e Measured over the oceans using satellite
altimetry (higher resolution).




Free-Air Gravity

e Most sensitive to shallow crustal structure
at short wavelengths (< 100 km).
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Power Spectrum: Geoid and Gravity
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Seawater Sediment
'[FJ=1-U_3]' ED=E-"J

S
A}

Marnitla
\ (P=33)

L]
Y G nisation
" depth = 50 km

[ -
Column of ™~ ) o Golumn af
water..sedimrﬁ%’hh t & continental
oceanic crust e crust pius

and marile . + mantle

15 ki

19958 Wadswarth Publishing Company s ITP

Isostatically Compensated

Uplift of Surface
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Subsidence of Surface
Driven by Flow

Dynamically Supported




Dynamic Topography
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From : Lithgow-Bertelloni & Silver, Nature 1998 (fig 1)
— Corrections for lithosphere age, sediment loading...

— Difficult to measure, poorly known.

— Use magnitude as constraint (+/- 900 meters).




Post-Glacial Rebound (PGR)

e (Glacial Isostatic
Adjustment (GIA).

— returning to isostatic
equilibrium.

— Unloading of the
surface as ice melts

(rapidly).

a. Peak glaciation

e T

b. During deglaciation

proglscial

X TtT ih'= b

From:

http://lwww.pgc.nrcan.gc.ca/geodyn/




Drop 1n apparent sea-

level, caused by uplift
of the land.

100’ s of meters in <
18,000 years.

Very well constrained
in a few locations.

Moderate quality in
lots of locations.

» -~ Brigantine
City

From http://www2.umt.edu/geologyl/faculty/sheriff/




Well-known for the present time.

e Accuracy degrades for times further in the past.
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Summary of Surface
Observations

Observation
Quality

Post Glacial Rebound variable (center)

Plate Motion good (recent)

Dynamic Topography
- surface/670 km/CMB poor (magnitude)
Geoid g00od (<100 km)

Free-air Gravity good (shallow)




Building the Mantle Structure

Surface

? Absolute Viscosity
? Viscosity Jumps
? Layered Flow

Core-Mantle Boundary

? Plate Boundaries
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Methods - 1

e Solve coupled flow & gravitational
potential equations for:

* instantaneous deformation (flow, surface
deformation, geoid) relative viscosity variations.

* time-dependent deformation (relative sea-level
curves, plate motions) for absolute viscosity and

variations.

e Internal density structure (except PGR):

e seismic tomography, slab seismicity, history of
subduction.

* scaling to density.
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Methods - 2

* Analytic Methods

— Radial/1-D or limited lateral structure.

— Forward and inverse models.
e How many layers (unknowns) can be determined?

e Predict multiple observations.

 Numerical Models
— Radial & strong lateral viscosity variations.
— Forward models (too costly for inversions?).

— Global and/or regional studies.




Sensitive to radial and lateral viscosity structure.

Uniform Viscosity Layered Viscosity

‘opography

Layer 1

Layer 2




“Robust” Constraints on
Viscosity Structure (1)

Observed

e Geoid:

— Very long wavelength X e

structure explained by
lower mantle structure. |

— Jump or increase in
viscosity from upper to
lower mantle.
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Post-Glacial Rebound (PGR)

e Rate of rebound:

— sensitive to absolute
viscosity.

* Depends on:

— 1ce-load size/shape,
sea-level measurements
& unloading history.

— lateral variations in
elastic plate properties.

a. Peak glaciation

e T

b. During deglaciation b

X TtT | b

From:

http://lwww.pgc.nrcan.gc.ca/geodyn/




“Robust” Constraints on
Viscosity Structure (2)

e Post-glacial rebound:

— Average upper (<1400 km) mantle viscosity.

— Haskell value, n=10%' Pa s. Start with jump

Depth (km
epiih ) at 670 km
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Mitrovica, JGR 1996 (fig 5) Frechet Kernels (depth sensitivity)




“Robust” Constraints on
Viscosity Structure (3)

* Chemical boundary to flow at 670 km
inconsistent with small (~10 km) observed
dynamic topography.

Deformed Top
Boundary

Predicts ~ 100 km < ¢ —— N
topography { < ¢¢"" Dynamic

Topography

at Upper-Lower
Mantle

Physics of the Planets, Boundary

Richards & Hager,




Plate motions

e Purely radial viscosity structure
— poloidal motion (divergence/ convergence) .

e How to use in modelling?

— Impose as boundary conditions.

— Predict from model (defined plate regions).

N Observed — = —— Predicted

" From: Conrad &

m— s——— | .
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“Robust” Constraints on
Viscosity Structure (4)

» Weak asthenosphere stabilizes plate
motion.

e Lateral variation in strength (fault/shear
zone)

— rigid plates & toroidal motion (strike-slip).

g.

0 2000 3000 5000 8000 70000 12000
x (km)

Richards et al, Gcubed, 2001 (fig. 3) Tackley G3, 2000a (fig. 8)




Summary of Surface
Observations

Observation Resolution

olute

2 Post Glacial Rebounc Note: Absolute viscosity
Plate Motions trades-off with assumed density

Ab

margins & asthenosphere.

ative

E) Dynamic Topography  No boundary to flow.
Geoid Deep, long wavelength.
Free-air Gravity Shallow, intermediate-long

wavelenothc




““Robust” Mantle Structure

Average Upper

MU NVdntle Viscosity
670

Core-Mantle Boundary
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Can we go further?

' ¥
e What is the resolving power of the
observations?

— How many layers?

— What range of viscosity?
— Are model results unique?

— How are models affected by a priori
assumptions’?




Challenges

w
»

e 1) Get to know the data:

— need observations that are sensifive to variations
1n mantle structure.




Current Mantle Structure
Models - Radial

e Predict Geoid & Dynamic Topography

e Variance reduction (L=2-6 ):
74%

— All three families work

min min min
T r () e (b) P Tt PR e

Viscosity
Panasyuk & Hager, GJI 2000 (fig 5 & 6).




Current Mantle S tructur
Models - Radial

e (Observations:

— free-air gravity/geoid,
— plate divergence,
— excess CMB ellipticity |

e Irregular radial profile .
— L=2—20 geOId - - 2-layer average i

— with Ek&Dz

--- with Grand

— Variance reduction
77 Y%

— Compared to 65% for 0% pa
two layer model. Viscosity

|
10°

o [Is this result unlque? Forte & Mitrovica Nature 2001 (fig




Challenges

i "
&

e 1) Sensitive observations.

e 2) Limitations of methods:
— Analytic methods

* Radial viscosity structure.

* Linear (Newtonian) rheology.




Viscous Rheology

' ¥
e Experimental data:

— Viscosity 1s strongly dependent on pressure
temperature, stress (strain-rate), grain size,
water, melt, & mineralogy ...

Flow Law ‘ ‘ ‘ ‘
e = Ao'd *C, He_‘:’"’"’b exp
Viscosity
n

g
€




Viscous Rheology

e Olivine: well-constrained. le0tes”

— peridotite # olivine.

e Deep-earth mineralogy

— Need better constraints

— e.g. perovskite - theoretical. [— Linear: Dry

— Melt $=0.1
— Wet

e Educated guesses: | 11T Nontinear:Dry

=== \Wet
Fan

— grain size,

— water & melt concentrations. R

Viscosity




Viscous Rheology

Hnriznﬂém Profiles Across Slab
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Should we go further?

 Experimental data

=¥ strong viscosity
variations.
e 3-D dynamics

— slab penetration into
strong lower mantle,

— mixing of geochemical
signatures,

— origin of plate
tectonics.

* Yes =?new challenges.




Challenges

i "
"

e 1) Sensitive observations.

e 2) Limitations of methods:
— Analytic methods

* Radial viscosity structure.
* Linear (Newtonian) rheology.
— Realistic rheology is numerically expensive
memory/time/cpus.




Illustrative Example (1)

—Surface

\
I Layered Viscosity | CMB

__ Strong slab — 100 —— Layered Viscosity
Ao 4 I Strong slab

0

4000 8000 12000 4000 8000 12000
Distance Distance

o Stiff slab in the mid-mantle vs the lower

mantle: reverses sign of the geoid
Zhong & Davies EPSL 1999 (fig 5)




Illustrative Example (2)

¢ Dense sinker Model Geometry
. . 175 180
* Low Viscosity Zone | ‘
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Billen, Appendix, Thesis Caltech 2001.




Two Illustrative Examples |

f ¢

e What is the magnitude of LVVs in

e upper mantle (weak regions & strong slabs)?
e Jower mantle (strong slabs)?

e May be right for the wrong reasons?

* Lateral viscosity variations can reverse the sign of
the geoid.

Is a radial viscosity structure still a useful
parameterization?




Current Mantle Structure
Models - Lateral

Viscosity & ® Observations
— Geoid.
— Dynamic Topography.
T ' ¢ Inversion for LVV in
Geoid: AR W top 300 km.
Predicted @& % 7 — Up to L=4.
| — Inhibited flow at 670.

Observed g !:__"' = — Maximum variance
/ | reduction 92%

Cadek & ‘#——aﬁ-\ﬂ. '

s — As good as 5 layer
. L]
Fleitout, GJI, 200311 sy radial model

-100m 0 +100m




Challenges

e 1) Sensitive observations.
e 2) Limitations of methods.

e 3) A priori assumptions:

— Simple relationships between viscosity &
seismic velocity boundaries.




Viscosity & Seismic Structure

e Are seismic discontinuities, viscosity
discontinuities?

e Inversions can depend on starting structure.

B, km/s

kY,

Viscosity

8

4 6 8
I

4\ I ], .} I. ‘,l l. |
Radius
] Mitrovica, JGR 1996, (fig 6)
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Challenges

e 1) Sensitive observations.

e 2) Limitations of methods.

e 3) A priori assumptions:

* 4) Poorly known observables:

— Seismic velocity-to-density scaling:

e Temperature and compositional buoyancy

— Dynamic topography on the surface and CMB:

* not well known, but also contributes to the geoid

— Post-glacial rebound (assumes ice-load).




Seismic, Density & Viscosity
Structure

_ Observation Interpretation

~— 18 Density
‘Fe: dVJ/V, /
' "'il.\ —_ f_"-_-_r‘ - N

Visity

Kellogg et al Science, 1999 ”M’“’ql 0; 1; ,l ,l




Viscosity & Seismic Structure

Kellogg et al
Science, 1999

How can we use surface observations to

detect or rule-out this kind of structure?




e Unnecessary Baggage??

— Radial viscosity structure.
— Linear (Newtonian) viscosity.
— Seismic boundaries = viscosity %

) i
boundaries. ity

e Inversions - how can these
be extended? Unique?

e Use forward models to
explore how complexities
atfect dynamics.
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Conclusions |

e Surface observables are not enough.

o Better constraints on connections to
seismic & mineralogical observations.

e Combine with observations that are
sensitive to the subsurface behavior:
— Seismic anisotropy.
— Geochemical/petrologic constraints.

— More experimental constraints on mineral
physics and rheology.




