ESS 524 Class #3

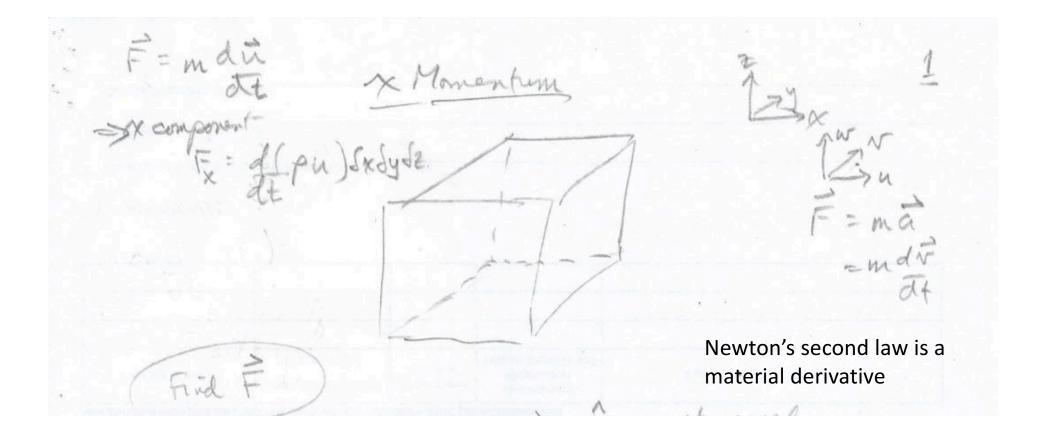
Highlights from last Wednesday – <u>Surabhi</u> Today's highlights on Wednesday – <u>Erich</u>

- Matlab Basics code is available under MATLAB CODE tab, (not under READING)
- HW #1 (Matlab) due on Wednesday. I have set up a Canvas site where you can turn it in.
- Week 1 journals due today. I have set up a Canvas site.

Today

- 2-minute initial ideas about projects.
- Derivation of Conservation Laws for linear momentum

ESS 524 Class #3


Next class we will move on to numerical methods Finite Difference Method FDM Finite Element Method FEM Finite Volume MethodFVM

At start of class, let's talk about the readings

Under READING

- Kwon and Bang Ch 1 on Matlab
- Ed's Notes on Steady 1-D Diffusion with Finite Elements
- Huebner on Finite elements
- Reddy and Gartling on Finite elements
- Versteeg and Malalasekera, Chapter 4
- Patankar, Chapters 3 and 4

Velocity components are (u, v, w)Force components are (F_x, F_y, F_z)

F Find n = 2 unit nermal Stress force 1 unitarea 7624 i = normal to plane i = dif= of force OZX 1 Ox2 542 OXX 82 Syx At center point p, Jij 54 · 5×

So on x face at Sx ony faces at 1 54 Xx = Oxx + dox Sx JSyde Xy+ = (Jx+doyx Sy Sxdz at -Sx Xy== 20yx - doyx dy 5x62{ Xx==- } Orex - Jox Sx Sx SySz{ - we because its on - we face On 2 faces X2+ = (J2x + dozx SZ) SxSy Body Forces 5 force unit mass X2-=- \$ (02x - 202x 52) Shoy? pbx SxSySz = net force in X dir"

Newton's second law is a material derivative

Rate of Change of X Momentum Find ma material derivative following d (pu)dradydz mars in volume & x dy dz. (tratis how F=ma works [pwu]dx - [pu]u] -dx) dy dz x moment carried a (pu) dridget2+ Xfoces + ([(ph) N] dy - (pu) + dy drdz actors arune dxdy acronz frees pul + Dipud [[pu]w]dz - [pu)w]_ ad? (pun) + d(puv) +d(puw)/dradydz

= = ft(pw)drodydz + fd(pun) + d(puv) + d(puw) fordydz = [c]n+uff+ udfa) + udfer) + udfer) dadyde + pn ja + pr jy + pu jz + pn ja + pr jy + pu jz Portuge + u V. (pii) + pii. Du Jakayadz = [(] + u. vu) + u (] + v. (pu)] dxdy dz = 0 by mass conservation = pdu dredyde

Put all together SX = Stroyde pdu Soxx + doyx + dozx + pbx = pdu dx + dy + dozx + pbx = pdu hormal fers Shear body as I Similarly dony + doy + dozy + Pby=[dogz + doyz + dozz + pbz = pdw or in compact form doij + cb; = cduj summation convention This + cb; = cduj repeated indices are dogi + doys + dozi + pb; = pdu; Summer i= x, y, z Jx + doys + dozi + pb; = pdu; J=x, y, or z => 3 equations.

For a linear viscous material, Stokes Law (Newtmian Fluid) Eij= Jij + pSij Eij= Strain rate = 2(IX, Jui) Zi deviatoric p= - Sii/3 - mean stress Stress prequire regative lanstress - ve sign because - restress is compressive Summation convention Gij = 2 M Eij - PSij + 1 Ekk Sij M = Shear viscosity 1 = bulkparameter for in compressible fluid k = 1 + 3 M mille my Ekk =0 Oig = 2µ Eig - poly Kronecker delta = 1 if *i* equals *j*,

=0 if *i* not equal to *j*

In X momentum equation JOAR + JOYX + JOZX + Pbx = P(du) JA JY + JZ + Pbx = P(du) $\frac{\partial}{\partial x}(2\mu \dot{\epsilon}_{xx} - p) + \frac{\partial}{\partial y}(2\mu \dot{\epsilon}_{yx}) + \frac{\partial}{\partial 2}(2\mu \dot{\epsilon}_{2x}) + p \frac{\partial}{\partial x} = p \frac{du}{dt}$ 2 d (m Jx) - Jx + Jgm (Jy + Jx) + Jn (m (Jz + Jx)) + p6x = p Jt P du = P J + P u P u = d(M J + J (M J + J (M J + J - (M J + (M J +helgershers + 2 (Mgy) + 3y (Mgy) + 3z (Mgy) - 32 + P3

Navier-Stokes equations