ESS 524 Class \#6

Highlights from last Monday - Surabhi
Today's highlights report on next Monday - Erich
Highlights reporters - please send me your report by email.

- Great Week 2 journals. You are all doing some good thinking.

Today

- HW \#2 on Matlab (Finite Difference code) due today Are there challenges to discuss now? More time needed?
- Class organization - how is it going with Zoom?
- If you get stuck on HW assignments, please feel free to contact me and/or classmates directly with your questions.
- It's great to work together on problems, just prepare your own answers in the end.
- Zoom study sessions for you to interact, compare approaches and answers?

ESS 524 Class \#6

Today

- Project updates
- Continuing with Finite Element Method (FEM)

Next Week

- Finite Volume Method (FVM)
- We will follow Patankar fairly closely, Ch 3 and Ch 4

HW \#2
Getting the analytical solution?

- FDM - Handling the second derivative (diffusion term)
- Expand with Product Rule, or not?
$\frac{\partial}{\partial x}\left(k(x) \frac{\partial \phi}{\partial x}\right)(*)$ when $k(x)$ varies with k.
(1) Product Rule Approach

$$
\begin{aligned}
& (*)=k(x) \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial k}{\partial x} \frac{\partial \phi}{\partial x} \\
& \rightarrow k_{j}\left(\phi_{j+1} \frac{-2 \phi_{j}+\phi_{j-1}}{\Delta x^{2}}\right)+\left(\frac{k_{j+1}-k_{j-1}}{\Delta x}\right)\left(\phi_{j+\frac{j}{}-\phi_{j}}^{\Delta x}\right.
\end{aligned}
$$

Problem - First derivatives span $2 \Delta x$

HW \#2

- FDM - Evaluate the slope at midpoints, so that all first derivatives are taken over span Δx rather than $2 \Delta x$
(2) Evaluate slopes at mid points. I assume $k(x)$ is known at mid points or can be estimated there e.g $k_{j+1 / 2}=\frac{\left(k_{j+1}+k_{j}\right)}{2}$

$$
\begin{aligned}
& (*) \longrightarrow\left[\frac{\partial \phi}{\partial x}\right]_{j+1 / 2}-\left[\kappa \frac{\partial \phi}{\partial x}\right]_{j-1 / 2} \\
& =\left[h_{j+1 / 2}\left(\phi_{j+1}-\phi_{j}\right)-k_{j-1 / 2}^{\Delta x}\left(\phi_{j}-\frac{\phi_{j}-1}{\Delta x}\right)\right] / \Delta x \\
& =\frac{k_{j+1 / 2} \phi_{j+1}-k_{j+1 / 2} \phi_{j}-k_{j-1} \phi_{j}+k_{j-1 / 2} \phi_{j-1}}{\Delta x^{2}}
\end{aligned}
$$

$$
\begin{align*}
& S(x)=P_{N}^{(5)}(x)=\sum_{n=0}^{N} a_{n} \frac{H W 2}{x^{n}} \\
& \frac{d}{d x}\left(k(x) \frac{d \phi}{d x}\right)+S(x)=0 \tag{1}
\end{align*}
$$

Integrate once

$$
\begin{aligned}
& \begin{array}{r}
\left(k(x) \frac{d \psi}{d x}\right)=-\int_{x_{0}}^{x} 5(x) d x^{\prime}=a \text { plynomial } \\
=\left|d\left(x_{0}\right) \frac{d \phi}{d x}\right|_{x_{0}}+\sum_{n=0}^{N} \frac{1}{n+1} a_{n} x^{n+1}=R(x) \\
\frac{d \phi}{d x}=R(x) P_{M}^{(k)}(x)=a \text { pilynomial } T(x) \\
\int_{x_{1}}^{x} \frac{d}{d x} d x^{\prime}=\phi(1)-\phi(x)=\int_{x_{0}}^{x} T(x) d x=U(x) \\
\phi(x)=\phi_{1} \quad-U(x)
\end{array} \quad \text { a plynomial }
\end{aligned}
$$

IN gradient BC is embedded

Product Rule and Integration by Parts

$$
\begin{align*}
& \int_{v(a)}^{v(b)} u(x) d v(x)=[u v]_{a}^{b}-\int_{u(a)}^{b(b)} v(x) d u(x) \\
& \text { or } \frac{d}{d x}[u(x) v(x)]=u \frac{d v}{d x}+v \frac{d u}{d x} \tag{2}
\end{align*}
$$

Integrate (2) from a to b to get (1)

Product Rule and Integration by Parts

When $v(x)$ is the $2^{\text {nd }}$ derivative term, and $u(x)$ does not include a derivative, after integration by parts,

- both $u(x)$ and $v(x)$ appear with first derivatives in the new integral term.
- In general, $v(\mathrm{x})$ is differentiated one time less, and $u(x)$ is differentiated one time more.
- boundary conditions show up naturally in the new constant term.

The challenge -

- How to represent a $2^{\text {nd }}$ order differential equation with piecewise $1^{\text {st }}$ order functions?
- The $2^{\text {nd }}$ derivative is identically zero everywhere
- except at the nodes, where it can be infinite.

The Solution - The weak form of the differential equation

- The weak form is a weighted-integral statement that is equivalent to the governing differential equation combined with its natural boundary conditions.
- The original equation is satisfied in an average sense, rather than point by point.
- The weak form is derived from the strong form by an integration by parts.
- After integration by parts, the $2^{\text {nd }}$ derivative has been replaced by a $1^{\text {st }}$ derivative, which is nonzero for a piecewise linear representation.

With Equation (17), the algebraic equations (12) and (13) in element j reduce to

$$
\begin{array}{r}
-k_{j}\left[\frac{\mathrm{~d} \tilde{\phi}}{\mathrm{~d} x}\right]_{x_{j-1}}^{(j)}-\frac{k_{j}}{\Delta x_{j}} \phi_{j-1}+\frac{k_{j}}{\Delta x_{j}} \phi_{j}+S_{j} \frac{\Delta x_{j}}{2}=0 \\
k_{j}\left[\frac{\mathrm{~d} \tilde{\phi}}{\mathrm{~d} x}\right]_{x_{j}}^{(j)}+\frac{k_{j}}{\Delta x_{j}} \phi_{j-1}-\frac{k_{j}}{\Delta x_{j}} \phi_{j}+S_{j} \frac{\Delta x_{j}}{2}=0 \tag{18}
\end{array}
$$

Note that if these two equations were added together, we would get an expected finite-volume expression for conservation of ϕ in element j, i.e.

$$
\begin{equation*}
k_{j}\left[\frac{\mathrm{~d} \tilde{\phi}}{\mathrm{~d} x}\right]_{x_{j}}^{(j)}-k_{j}\left[\frac{\mathrm{~d} \tilde{\phi}}{\mathrm{~d} x}\right]_{x_{j-1}}^{(j)}=S_{j} \Delta x_{j} \tag{19}
\end{equation*}
$$

i.e. the difference in fluxes across the boundaries must equal the integrated production rate inside element j.

Equations for 3 linear elements, with 4 nodes

We have 6 weighting equations for 4 nodes.

- We need only 4 equations.
- The first and last equations are just the boundary conditions

- Add together the two equations that apply to the same boundary, but from the elements on opposite sides.
- This effectively isolates the residuals around that node

- Combining the equations at nodes 2 and 3 reduces the number of equations by 2
- The flux terms will also cancel and vanish.
- We are left with 4 equations.

