ESS 524 Class \#7

Highlights from last Wednesday - Erich
Today's highlights report on this coming Wednesday - David
Today

- Project updates
- FVM Basics
- 1-way and 2-way coordinates
- Notation: Δx vs $(\delta x)_{\mathrm{e}} ; a_{p}$ vs $a_{\mathrm{e}} ; k_{\rho}$ vs k_{e}
- Interpolation in a volume
- Source term - $S(\phi)$ dependence
- Formation of matrix equations
- 4 Rules

Next Week

- Time stepping

Options for Interpolation Function

Notation for Finite Volume around node P

- Nodes are upper case - West, Point, East
- Volume edges are lower case - west edge, east edge
- In 2-D add N, S, n, s; in 3-D, add U, D, u, d
T

Differential Equation for steady 1-D heat flow

$$
\begin{equation*}
\frac{d}{d x}\left(k \frac{d T}{d x}\right)+S=0 \tag{3.10}
\end{equation*}
$$

Mesh around node P

Integrate Diff Eq over the finite volume

$$
\begin{equation*}
\left(k \frac{d T}{d x}\right)_{e}-\left(k \frac{d T}{d x}\right)_{w}+\int_{w}^{e} S d x=0 \tag{3.11}
\end{equation*}
$$

Difference in boundary fluxes

$$
+ \text { internal source production }=0
$$

Setting up a matrix equation

$$
\begin{equation*}
\frac{k_{e}\left(T_{E}-T_{P}\right)}{(\delta x)_{e}}-\frac{k_{w}\left(T_{P}-T_{W}\right)}{(\delta x)_{w}}+\bar{S} \Delta x=0, \tag{3.12}
\end{equation*}
$$

Collect terms multiplying each nodal value

$$
\begin{align*}
& a_{P} T_{P}=a_{E} T_{E}+a_{W} T_{W}+b, \tag{3.13}\\
& a_{E}=\frac{k_{e}}{(\delta x)_{e}}, \\
& a_{W}=\frac{k_{w}}{(\delta x)_{w}}, \tag{3.14b}\\
& a_{P}=a_{E}+a_{W}, \tag{3.14c}\\
& b=\bar{S} \Delta x . \tag{3.14d}
\end{align*}
$$

Common-sense Discretization Schemes

- A realistic approximation should have same trends as exact solution
- Conservation Laws should hold globally, even with a coarse mesh.
- Fluxes across a boundary between 2 volumes must be consistent.
- Source linearization should not create numerical instability. (Solving equations for a real physical instability is tricky already.)

The Four Rules

1. Fluxes across a boundary between 2 volumes must be consistent from the left and from the right.

- Surely a quadratic estimates of the slope of the solution must be better than linear estimate, right?
- Wrong! The estimate must be identical whether considering Volume P or Volume E.

The Four Rules

2. In absence of T-dependent sources, all coefficients $a_{P} a_{E}$ etc must have the same sign.

- Otherwise, an increase in T at node E could cause a decrease in T at node P.
- Diffusion doesn't work that way!

3. Negative-slope linearization of the source term. $\bar{S}=S_{C}+S_{P} T_{P}$

- If an estimate of T is too big, then so is the source, and then T increases again at the next iteration

4. In absence of T-dependent sources, a_{P} should equal the sum of neighbor coefficients a_{E} etc. $a_{P}=\sum a_{n b}$

- When only derivatives of T are present, $T=T+c$ should also be a solution.
- Solution T_{p} should be a weighted average of the surrounding values.
- When all neighbors $T_{n b}$ are equal, the center point T_{p} must have the same value (steady state)

Equations with T-dependent Source Term

$$
\begin{equation*}
\frac{d}{d x}\left(k \frac{d T}{d x}\right)+S=0 \tag{4.1}
\end{equation*}
$$

This leads to the discretization equation

$$
\begin{equation*}
a_{P} T_{P}=a_{E} T_{E}+a_{W} T_{W}+b, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
a_{E} & =\frac{k_{e}}{(\delta x)_{e}}, \tag{4.3a}\\
a_{W} & =\frac{k_{w}}{(\delta x)_{w}}, \tag{4.3b}\\
a_{P} & =a_{E}+a_{W}-S_{P} \Delta x, \tag{4.3c}\\
b & =S_{C} \Delta x . \tag{4.3d}
\end{align*}
$$

and

Interface conductivity k_{e}

$$
q_{e}^{\prime}=\frac{k_{e}\left(T_{P}-T_{E}\right)}{(\delta x)_{e}}
$$

Linear mix

$$
\begin{aligned}
k_{e} & =f_{e} k_{P}+\left(1-f_{e}\right) k_{E}, \\
f_{e} & \equiv \frac{(\delta x)_{e \pm}}{(\delta x)_{e}}
\end{aligned}
$$

$$
q_{e}=\frac{T_{P}-T_{E}}{(\delta x)_{e-} / k_{P}+(\delta x)_{e+} / k_{E}} . \quad k_{e}^{-1}=0.5\left(k_{P}^{-1}+k_{E}^{-1}\right)
$$

$$
k_{e}=\left(\frac{1-f_{e}}{k_{P}}+\frac{f_{e}}{k_{E}}\right)^{-1}
$$

$$
k_{e}=\frac{2 k_{P} k_{E}}{k_{P}+k_{E}}
$$

