ESS 524 Class \#8

Highlights from last Monday - David
Today's highlights report on next Monday - Erich
Today

- More on source linearizations
- Treatment of boundaries
- Transient problems
- Patankar Section 4.3
- Ed's Notes on time stepping

Next Week

- Time stepping - instability
- Ed's note on transfer functions for diffusion equation
- Linear instability analysis, transfer functions
- HW \#3 due Wednesday. How’s it going?

Source linearization if $S=4-5 T^{3}$
Iterations will be required.
S^{*} and T^{*} indicate values at current iteration.

3. Recommended method: tangent to the $S \sim T$ curve at T_{P}^{*}.

$$
S=\underline{S}^{*}+\left(\frac{d S}{d T}\right)^{*}\left(T_{P}-T_{P}^{*}\right)
$$

$$
=4-5 T_{P}^{* 3}-15 T_{P}^{* 2}\left(T_{P}-T_{P}^{*}\right)
$$

$$
S_{C}=4+10 T_{P}^{* 3}, \quad S_{P}=-15 T_{P}^{* 2}
$$

4. $S_{C}=4+20 T_{P}^{* 3}, S_{P}=-25 T_{P}^{* 2}$

Nonlinear coefficients also arise, e.g.

- thermal conductivity $k(T)$
- Specific heat capacity $c_{p}(T)$

They can also be treated through iterations

The Challenge at Boundaries - half-volume solution

- Specified-value boundary conditions are applicable at nodes.
- Flux boundary conditions are applicable at volume edges .

- Specified-value at $x_{B}: T_{B}=T_{0}$
- Specified q_{B} flux at $x_{B}: q_{B}-q_{i}+\left(S_{C}+S_{P} T_{B}\right) \Delta x=0$ Flux difference across half volume

$$
+ \text { total source in half volume }=0
$$

Extension to 2-D

$$
\begin{aligned}
& \rho c \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+S \\
& a_{P} T_{P}=a_{E} T_{E}+a_{W} T_{W}+a_{N} T_{N}+a_{S} T_{S}+b \\
& a_{E}=\frac{k_{e} \Delta y}{(\delta x)_{e}}, \\
& a_{W}=\frac{k_{w} \Delta y}{(\delta x)_{w}}, \\
& a_{N}=\frac{k_{n} \Delta x}{(\delta y)_{n}}, \\
& a_{S}=\frac{k_{s} \Delta x}{(\delta y)_{s}}, \\
& a_{P}^{0}=\frac{\rho c \Delta x \Delta y}{\Delta t}, \\
& b=S_{C} \Delta x \Delta y+a_{P}^{0} T_{P}^{0}, \\
& a_{P}=a_{E}+a_{W}+a_{N}+a_{S}+a_{P}^{0}-S_{P} \Delta x \Delta y .
\end{aligned}
$$

Flux q_{e} across edge x_{e} is assumed to be

- uniform along the volume edge Δy
- calculated from nodes P and E

Additional considerations in 2-D

Practice A

- volume edges are halfway between nodes
- Fluxes are calculated halfway between nodes
- But not at center of faces
- P is not in center of volume

Practice B

- nodes are halfway between volume edges
- P is in center of volume
- Fluxes are calculated at face centers
- but not halfway between nodes
- Works well for composite materials

Boundary volumes in 2-D

Practice A

- Boundary volumes are halfvolumes.
- Treat same as in 1-D

Practice B

- Boundary volumes are infinitesimally thick
- Boundary node and first two edges coincide, so either type of $B C$ can be applied easily.

Time stepping

Read Ed's notes on time stepping under the READING tab on the class web page.
Time-splitting parameter α

- Fully Explicit
- Crank Nicolson
- Fully Implicit

Patankar uses simplest possible model to illustrate each new concept
e.g. Behavior of a single node with fixed neighbors

- When space and time are continuous (analytical solution)
- When space is discretized and time is continuous
- When space and time are both discretized (as in a typical numerical code)

