ESS 524 Class \#9

Highlights from last Wednesday - Erich
Today's highlights report on next Wednesday - Shashank
Today

- Time stepping - Linear Computational Instability
- Ed's note on transfer functions for diffusion equation
- Linear instability analysis, transfer functions
- HW \#3 due Wednesday. How's it going?

Next - including advection (when velocity is known)

- Patankar - Chapter 5
- Versteeg and Malalasekara - Chapter 5
- Ed's Notes on transfer functions with advection

Time stepping

Read Ed's notes on time stepping under the READING tab on the class web page.
Time-splitting parameter α

- $\alpha=0$ Fully Explicit
- $\alpha=0.5$ Crank Nicolson
- $\alpha=1$ Fully Implicit

Patankar uses simplest possible model to illustrate each new concept
e.g. Behavior of a single node with fixed neighbors

- When space and time are continuous (analytical solution)
- When space is discretized and time is continuous
- When space and time are both discretized (as in a typical numerical code)

HW \#3

Finite Element Solution
\#1 Red - nodes uniformly spaced
\#2 Blue - nodes concentrated near $x=0$
\#3 Green - nodes concentrated near $x=1$

HW \#3

Finite Volume Solution

- Nodes uniformly spaced

HW \#3

Finite-difference Solution

- Nodes uniformly spaced
- 2 poor discretization schemes

HW \#3

Finite-difference Solution

- Nodes uniformly spaced
- 2 poor discretization schemes

Accuracy and time steps - value at central point

Black- Continuous space and time
Red - Discrete space, continuous time
Blue -Discrete space and time, $\alpha=1$ (Implicit scheme)
Green -Discrete space and time, $\alpha=0.5$ (Crank-Nicolson scheme)
Magenta -Discrete space and time, $\alpha=0$ (Explicit scheme)

$$
\phi_{P}=\phi_{P}^{0}\left[\frac{1-(1-\alpha)(\Delta t / \tau)}{1+\alpha(\Delta t / \tau)}\right]
$$

$$
\tau=\frac{\Delta x^{2}}{2 \Gamma}
$$

Today

Another look at time stepping

- with Transfer Functions

