ESS 524 Class #10

Highlights from last Monday – Shashank Today's highlights report on next Monday – Erich

Today

- HW #3 is due today. How's it going?
- When to hold project presentations?
 Scheduled time for (non)exam Thursday June 11, 2:30
- Time stepping Linear Computational Instability
 O Wrap up time splitting parameter
- including advection (when velocity is known)
 Patankar's use of simple examples to give insight

Reading

- Patankar Chapter 5
- Versteeg and Malalasekara Chapter 5
- Ed's notes Transfer functions for advective-diffusion equation

Time stepping

Read *Ed's notes on time stepping* under the READING tab on the class web page.

Time-splitting parameter α

- α =0 Fully Explicit
- α =0.5 Crank Nicolson
- $\alpha = 1$ Fully Implicit

Patankar uses simplest possible model to illustrate each new concept, e.g. Behavior of a single node with fixed neighbors Ed's notes extended this idea -

- When space and time are continuous (analytical solution)
- When space is discretized and time is continuous
- When space and time are both discretized (as in a typical numerical code)

Transfer Function F(k)

We can also look at a general spatial signal $\phi(x,0)$

- $\phi(x,0)$ is a signal at time t=0
- *k* is wavenumber or spatial frequency
- $\tilde{\phi}(k,0)$ is a wavenumber component of $\phi(x,0)$ after taking the spatial Fourier transform of $\phi(x,0)$

F(k) expresses how each sinusoidal component $\tilde{\phi}(k,0)$ with wavenumber k looks at a later time t.

For the diffusion equation,

 $\tilde{\phi}(k,t) = \tilde{\phi}(k,0) \exp(-\Gamma k^2 t)$

• $F(k) = \exp(-\Gamma k^2 t)$ is the transfer function.

Transfer Function $F(k_N)$

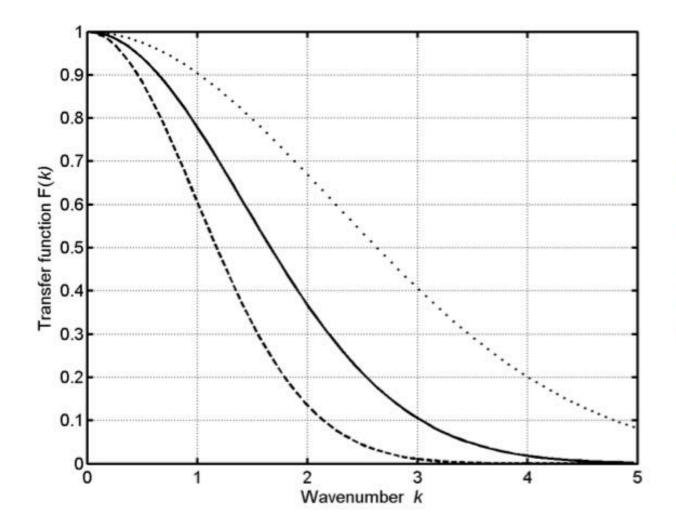


Figure 1. Transfer function F(k) for analytical diffusion equation, as a function of wavenumber k, for time steps $\Delta t=0.1$ (dotted), $\Delta t=0.25$ (solid), and $\Delta t=0.5$ (dashed). Diffusion parameter is $\Gamma = 1$.

Transfer Function $F(k_N)$

Time-splitting parameter α

Characteristic time
$$au = \frac{\Delta x^2}{2\Gamma}$$

$$F(k_N) = \left(\frac{1 - 2(1 - \alpha)\Delta\tau}{1 + 2\alpha\Delta\tau}\right)$$

 k_N is Nyquist wavenumber

- 2 nodes per cycle ($\lambda = 2\Delta x$)
- Highest wave number that can be resolved on a grid at Δx

Dimensionless time step
$$\Delta \tau = \frac{2\Gamma \Delta t}{\Delta x^2} = \Delta t/\tau$$

	α	$F(k_{\rm N})$	$\Delta \tau$	Range of F(k _N)	Result
0	(Explicit)	(1-2Δ <i>τ</i>)	∆ t <1	$-1 < F(k_N) < 1$	OK
			∆t>1	$F(k_{\rm N}) \leq -1$	Bad
0.5	(Crank-Nicolson)	$(1-\Delta \tau)/(1+\Delta \tau)$	Any ∆t>0	$-1 < F(k_N) < 1$	OK
1.0	(Implicit)	1/(1+2Δτ)	Any ∆r>0	$0 \le F(k_{\rm N}) \le 1$	Good

Fun with Code

Check out the MATLAB codes on the web site

- One-point Transient Response
- Linear Computational Instability