ESS 524 Class #13

Highlights from last Wednesday — Erich
Today’s highlights report next Wednesday — Shashank

Today
* Project updates
* Another look at instabilities
* Time stepping 2I'At/Ax? > 1
* Flow |P|>1
e Code —ice-sheet

Reading
e Patankar — Chapter 6: Calculation of the Flow Field

* Versteeg and Malalasekara — Chapter 6: coupled p and v
* Ed’s notes on transient ice cap or glacier flow



Discretized
PDE

Terms
collected

Terms

Time steps with diffusion
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apTp =ag [fTg + (1 — )Tg] +ay [fTw + (1 — f)Ty)

+ [ap — (1 = fag — (1 = fay] Tp , (4.36)
ag = (5’;")e ; - (4.37a)
g = (6’;“)’;9 , (4.37b)
af =2 Zf—’f , (4.37¢)

ap = fag + fay + ap . (4.37d) 2



Discretized
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Explicit Scheme f=0
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For the explicit scheme (f = 0), Eq. (4.36) becomes
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Diffusing a signal

Temperature raised suddenly by AT at the boundary of an isothermal half-space
with conductivity k, density p, and heat capacity c.

Analytical solution for temperature T(x t) _T + AT erfc X
at distance x into half space ’ 0 NVAN;
Time to raise temperature ~AT/3 at sz

a distance Ax into the half space t> T

’ Explicit scheme. Gamma=0.25 A x=0.1 At=0.02

Compare to the stability criterion for

Black - analytical solution explicit scheme (f=0)
0.8+ "'v" Red - Explicit solution

g o : 2
B=[2T dt/dx" ] =1 | At < pc(Ax)
2k




Diffusing a signal

Analytical solution for temperature
at distance x into half space after
step change AT at boundary x=0.

Time 7 to change temperature T 2
by ~AT/3 at a distance x into the T=—
half space 2T

Compare t to the stability criterion
for explicit scheme (f=0)

2k

Recall that the explicit scheme can transfer
information only Ax in a single time step At

2

If Af>

; 2
At < LE(Ax)
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B
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T(x,t) =T, +AT erfc(

X
41t

) I = k/(pc)

:

’ Explicit scheme. Gamma=0.25 A x =0.1 A t=0.02

0.8 i\

Black - analytical solution

Red - Explicit solution

B=[2Tdt/dx?] =1

0.6} |

0.4 |

0.2

, significant information (temperature) needs to be sent beyond Ax in one

time step At, but the explicit scheme can’t push information beyond Ax.
e Signal squashes up, distorts, and we get the Linear Computational

Instability.



. * Control volume
Advection —

| v Y ;
central-difference —0 -
scheme LS 2
d _d d¢
& = (F ZiI) L (6x) .L (6x), ‘
Integrate B B do 3 do
over volume (pud)e — (pug)y = (F E)e (F Jx>w '

1
¢ values at be = 3 (¢ t+ ¢p) Advection strength
boundaries ¢, = % (6p + dw)

F = pu

Diffusion conductance =T

Discretization aP¢P =4ag ¢5 + aw¢w

ox
F

F

ag or a,, can become negative
=D, +-¥
aw w

> when advection |F]| is large —
) F
ap=De+%+Dw—'2—w F >1
=ag ay+ (Fo—F) 2D 6
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Advecting a signal y
35+ E
Time is still involved in this steady-state
problem. At the grid scale 630' A/
2 i
Ly = Ax_ Loy = ﬁ §25 " -v_;:f/
r o e . »5%;;;_-,-::5""
. . . . . e I i S s
Diffusion time increases quadratically % £ aaii '
with increasing distances Ax. 815} ¢
R : £ Xp Xp
Advection time increases only linearly. @
10+ _
@ = ¢y is fixed at the right boundary.
Adjacent node X, needs to know about ¢
only if x, is “close enough” to x;. 0 ; :
Setting T, =T, shows that “close enough” ° z * : : "
8 1,4 = diff 8 Depth (m)
means r
Ax = —
u

If advection carries value ¢, from x; to xg much faster than diffusion from xz can inform
node at xp that a fixed value ¢ = ¢ is ahead at the boundary, then the numerical

scheme should not incorporate ¢ into the equation for ¢, by giving equal weights to
both nodes.

* Node spacing Ax must be reduced until Ax ~I'/u or less.



0 ' Lo o | ds
Advecting a signal 35 : :
30} i> | : +
If node spacing Ax >T'/u, %25_ E i *
Xp is too far from xg to “feel” the warm = Enaiy O Lt
boundary condition ¢. GO 1 ? T E
But central-difference scheme with large éw- ! ]
Ax forces volume edge at x, to “feel” the ~ + 1o} ! :
boundary value ¢z anyway. = ! ! ;
Correct slope at x,should be vey small. ) Xwy Xl Xpb X X=X

Erroneously large positive slope at x, 0 2 4 6 8 10
delivers too much heat into the finite oepiim)

volume from xg.

This excess diffusive heat gain must be offset by advective heat loss in steady state.
Since u is uniform, ¢, - ¢, > 0 produces net advective export u(¢, — ¢,)

@, is constrained to fall on the line joining ¢, and ¢, so ¢,, is forced leave the correct
solution to produce correct advective export (high or low depends on u and I').

@» can be forced to fall below the correct solution in order to make ¢,, satisfy the pde.
In example shown, additional heat conducted across x,, must be compensated by
reduced advective flux, i.e. reduced ¢,

Adjustments to compensate taper off upstream.

Cause is inabilit y to represent curvature near boundary.



