ESS 524 Class #13

Highlights from last Wednesday – Erich Today's highlights report next Wednesday – Shashank

Today

- Project updates
- Another look at instabilities
 - Time stepping $2\Gamma \Delta t / \Delta x^2 > 1$
 - Flow |P|>1
- Code ice-sheet

Reading

- Patankar Chapter 6: Calculation of the Flow Field
- Versteeg and Malalasekara Chapter 6: coupled p and v
- Ed's notes on transient ice cap or glacier flow

Time steps with diffusion

Discretized PDE

$$\rho c \; \frac{\Delta x}{\Delta t} \; (T_P^1 - T_P^0) = f \left[\frac{k_e (T_E^1 - T_P^1)}{(\delta x)_e} - \frac{k_w (T_P^1 - T_W^1)}{(\delta x)_w} \right] \\ + (1 - f) \left[\frac{k_e (T_E^0 - T_P^0)}{(\delta x)_e} - \frac{k_w (T_P^0 - T_W^0)}{(\delta x)_w} \right] \; . \; (4.35)$$

$$a_{P}T_{P} = a_{E} \left[fT_{E} + (1-f)T_{E}^{0} \right] + a_{W} \left[fT_{W} + (1-f)T_{W}^{0} \right] + \left[a_{P}^{0} - (1-f)a_{E} - (1-f)a_{W} \right] T_{P}^{0}, \qquad (4.36)$$

Terms

Terms

collected

 $a_E = \frac{k_e}{(\delta x)_e} , \qquad (4.37a)$

- $a_W = \frac{k_W}{(\delta x)_W} \quad , \tag{4.37b}$
- $a_P^0 = \frac{\rho c \ \Delta x}{\Delta t} , \qquad (4.37c)$
- $a_P = f a_E + f a_W + a_P^0 . (4.37d)$

2

Explicit Scheme *f*=0

Discretized PDE

$$\rho c \ \frac{\Delta x}{\Delta t} \ (T_P^1 - T_P^0) = f \left[\frac{k_e (T_E^1 - T_P^1)}{(\delta x)_e} - \frac{k_w (T_P^1 - T_W^1)}{(\delta x)_w} \right] + (1 - f) \left[\frac{k_e (T_E^0 - T_P^0)}{(\delta x)_e} - \frac{k_w (T_P^0 - T_W^0)}{(\delta x)_w} \right] . (4.35)$$

For the explicit scheme (f = 0), Eq. (4.36) becomes

Terms collected

$$a_P T_P = a_E T_E^0 + a_W T_W^0 + (a_P^0 - a_E - a_W) T_P^0.$$

Terms

Diffusing a signal

Temperature raised suddenly by ΔT at the boundary of an isothermal half-space with conductivity k, density ρ , and heat capacity c.

Analytical solution for temperature at distance *x* into half space

$$T(x,t) = T_0 + \Delta T \operatorname{erfc}\left(\frac{x}{\sqrt{4\Gamma t}}\right)$$

Time to raise temperature $\sim \Delta T/3$ at a distance Δx into the half space

$$\Delta t > \frac{\Delta x^2}{2\Gamma}$$

Compare to the stability criterion for explicit scheme (*f*=0)

$$\Delta t < \frac{\rho c (\Delta x)^2}{2k}$$

Diffusing a signal

Analytical solution for temperature at distance x into half space after step change ΔT at boundary x=0.

$$T(x,t) = T_0 + \Delta T \operatorname{erfc}\left(\frac{x}{\sqrt{4\Gamma t}}\right) \qquad \Gamma = k/(\rho c)$$

If $\Delta t > \frac{\Delta x^2}{2\Gamma}$, significant information (temperature) needs to be sent beyond Δx in one time step Δt , but the explicit scheme can't push information beyond Δx .

• Signal squashes up, distorts, and we get the Linear Computational Instability.

 $a_P = D_e + \frac{F_e}{2} + D_w - \frac{F_w}{2}$

 $= a_E + a_W + (F_e - F_w)$

6

Advecting a signal

Time is still involved in this steady-state problem. At the grid scale

$$T_{diff} = \frac{\Delta x^2}{\Gamma}$$
 $T_{adv} = \frac{\Delta x}{u}$

- Diffusion time increases quadratically with increasing distances Δx .
- Advection time increases only linearly.
- $\phi = \phi_{\rm B}$ is fixed at the right boundary.
- Adjacent node X_P needs to know about ϕ_B only if x_P is "close enough" to x_B .

• Setting
$$T_{adv} = T_{diff}$$
 shows that "close enough" means

$$\Delta x = \frac{1}{u}$$

If advection carries value ϕ_P from x_P to x_B much faster than diffusion from x_B can inform node at x_P that a fixed value $\phi = \phi_B$ is ahead at the boundary, then the numerical scheme should not incorporate ϕ_B into the equation for ϕ_P by giving equal weights to both nodes.

• Node spacing Δx must be reduced until $\Delta x \sim \Gamma/u$ or less.

Advecting a signal

If node spacing $\Delta x > \Gamma/u$,

- $x_{\rm P}$ is too far from $x_{\rm B}$ to "feel" the warm boundary condition $\phi_{\rm B}$.
- But central-difference scheme with large Δx forces volume edge at $x_{\rm e}$ to "feel" the boundary value $\phi_{\rm B}$ anyway.
- Correct slope at x_e should be vey small.
- Erroneously large positive slope at x_e delivers too much heat into the finite volume from x_B .

- This excess diffusive heat gain must be offset by advective heat loss in steady state.
- Since *u* is uniform, $\phi_e \phi_w > 0$ produces net advective export $u(\phi_e \phi_w)$
- ϕ_{e} is constrained to fall on the line joining ϕ_{P} and ϕ_{E} , so ϕ_{w} is forced leave the correct solution to produce correct advective export (high or low depends on u and Γ).
- $\phi_{\rm P}$ can be forced to fall below the correct solution in order to make $\phi_{\rm W}$ satisfy the pde.
- In example shown, additional heat conducted across x_w must be compensated by reduced advective flux, i.e. reduced ϕ_w .
- Adjustments to compensate taper off upstream.
- Cause is inabilit y to represent curvature near boundary.