ESS 524 Class #14

Highlights from last Monday- Shashank
Today’s highlights report next Monday - Erich

Today
* Yet Another look at instabilities

o Time stepping 2I'At/Ax?> > 1
* Flow |P|>1
 Code
e SH elastic waves
* False diffusion

Reading
e Patankar - Chapter 6: Calculation of the Flow Field

* Versteeg and Malalasekara — Chapter 6: coupled p and v
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Terms

Time steps with diffusion
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Discretized
PDE

Terms
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Terms

Explicit Scheme f=0
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For the explicit scheme (f = Q), Eq. (4.36) becomes
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Diffusing a signal

Temperature raised suddenly by AT at the boundary of an isothermal half-space
with conductivity k, density p, and heat capacity c.

Analytical solution for temperature T(x t) —T + AT erfc X
at distance x into half space ’ 0 ATt
Time to raise temperature ~AT/3 at A Ax®

a distance Ax into the half space r> b

’ Explicit scheme. Gamma=0.25 A x =0.1 A t=0.02

Compare to the stability criterion for

Black - analytical solution explicit scheme (f=0)
0.8 HIN\ Red - Explicit solution
' B=[2Tdt/dx?] =1 c(Ax é
Ar < Pe(Ax)

2k




Analytical solution for temperature

at distance x into half space after
step change AT at boundary x=0.

Time T to change temperature T

2
X
by ~AT/3 at a distance x into the T = 2—
half space r
Compare T to the stability criterion . 2
pc(Ax
for explicit scheme (f=0) At < .__%E__)_

Recall that the explicit scheme can transfer
information only Ax in a single time step At

2
If At>Ax

T(x,t)=T,+AT erfc(
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Diffusing a signal

\/rl"t) I' = k/(pc)

’ Explicit scheme. Gamma=0.25 A x =0.1 At=0.02

Black - analytical solution

Red - Explicit solution

d=[2Tdvdx?]=1

, significant information (temperature) needs to be sent beyond Ax in one

time step At, but the explicit scheme can’t push information beyond Ax.
Signal squashes up, distorts, and we get the Linear Computational
Instability.




] * Control volume
Advection -

_ w V P4 E
central-difference —0 o —
scheme L 4
d o d [ de
Z-I*X—(Purﬁ) =i (F dx) L_ (6X) Je (6x)g —.l

Integrate - _ do B do
over volume (pug)e — (pud)y = (F —>e (F —-)w '

dx dx
o | .
¢ values at Pe = 3 (e + ¢p) Advection strength F = pu
i = 1 e
boundaries ¢, = 3 (op + dw) Diffusion conductance D = 5£
Discretization apPp = Ag P +awodw
F,
y ) i
ag e 3
=p. +Fw ap or a,, can become negative
W= Sw T when advection |F| is large -
F F
ap = D, 3 w 3 >1
=ag +ay + (Fe = F) 2D ;
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Advecting a signal
35} /
Time is still involved in this steady-state
problem. At the grid scale |
2 ,.:i""'
T = Ax = Ax 3251 74
I o | _-y;—l»:-‘v"'*_"
] ) ) ] . SR )] e e E—— -
Diffusion time increases quadratically 5 1
with increasing distances Ax. ;&15 I T
Advection time increases only linearly. @ ; Xp XB
10} _
¢ = ¢y is fixed at the right boundary.
Adjacent node X, needs to know about ¢,
only if x, is “close enough” to x;. 0 5 - 2 : =
Setting T, =T, shows that “close enough Depth (m)
means r
Ax = —
u

If advection carries value ¢, from x, to x; much faster than diffusion from x; can inform
node at x, that a fixed value ¢ = ¢, is ahead at the boundary, then the numerical

scheme should not incorporate ¢, into the equation for ¢, by giving equal weights to
both nodes.

* Node spacing Ax must be reduced until Ax ~I'/u or less.
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Advecting a signal as | . :
I I
_30} u ; ! &
If node spacing Ax >T/u, %25_ | : F
X, is too far from x; to “feel” the warm = o Pp! J
oy SQO—-—#—‘ i I U RS
boundary condition ¢. & ! |
But central-difference scheme with large 2157 ! ! :
Ax forces volume edge at x_ to “feel” the = 10} : ;
boundary value ¢, anyway. sl ! : ;
Correct slope at x, should be vey small. Xwy X Xel X Xe=\Xp

Erroneously large positive slope at x, 0 2 4 6 8 10
delivers too much heat into the finite
volume from xg.

This excess diffusive heat gain must be offset by advective heat loss in steady state.
Since u is uniform, ¢, - ¢,, > 0 produces net advective export u(¢,— ¢,)

@, is constrained to fall on the line joining ¢, and ¢, so ¢, is forced leave the correct
solution to produce correct advective export (high or low depends on u and I').

¢, can be forced to fall below the correct solution in order to make ¢, satisfy the pde.
In example shown, additional heat conducted across x,, must be compensated by
reduced advective flux, i.e. reduced ¢,.

Adjustments to compensate taper off upstream.

Cause is inabilit y to represent curvature near boundary.



SH Elastic waves

Transient diffusion equation

W _{59, 7 _,
ot ox” Gy

Elastic wave equation for SH waves
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Discretization Equation
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Meshes for diffusion or wave equations

Diffusion Diffusion Wave
Implicit Explicit Equation
T o) o) o) o) o) o) o) IO
é 0 I
[ (BAXO 0
Distance X —>

* Discretization Equation
subscripts — space

* superscripts - time (¢(n+l) _2¢§n) +¢§n—1)) o 2( (Zl) _2¢]§n) +¢](n1))
j j j _(u.” ) J ~ =0
2

At* g Ax
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False diffusion

In discretization scheme, material takes wavy paths instead of straight pathes
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False diffusion

In discretization scheme, material takes wavy paths instead of straight pathes
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