ESS 524 Class #16

Highlights from last Monday — Shashank
Today’s highlights report next Wednesday — Erich

Today
* Homework progress
* Beyond the Cartesian mesh
e Structured vs unstructured grids
 Boundary-fitted grids — see Price et al. (2007)
* Fluxes across volume edges in non-cartesian grids

Reading
* Versteeg and Malalasekara — Chapter 11 Complex Geometries



Next week

* Monday is Memorial Day

* Wednesday, Daniel Shapero will lead the first of 2 classes to
introduce us to Firedrake,

https://www.firedrakeproject.org/

* solving advective-diffusive problems.

e Recall that the Divergence Theorem (converting volume integrals
into surface integrals) underlies virtually all numerical methods
to solve pde’s ©

https://en.wikipedia.org/wiki/Divergence theorem#Corollaries

Do you have access to Python, including SymPy?
* (SymPy is included in Anaconda)
https://www.anaconda.com/products/individual




Curvilinear orthogonal boundary-fitted mesh

Lines of constant coordinate values (X, Z2) t
are curves in Cartesian (x, z) space
* X and Z coordinate lines meet at right
angles
. . Sta(\t
* Finite-volume edges are curves 5 =con
* Edges meet curves joining volume
centers at right angles.
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Map curvilinear geometry
onto Cartesian geometry

Equations to be solved have the
same form, apart from some
geometric coefficients



Surface

Creating orthogonal (X, Z2)
coordinate system

Curves of constant Z
 Fractional distance between bed

B(x) and surface S(x)
Z—B(x)
S(x)—B(x)

[ J ZA:

Curves of constant X
* Constructed orthogonal to curves
of constant Z
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Metric tensor g,

gjj=e; - € If e;and e; are ba5|s.vectors in an
orthonormal coordinate system, g _ 9;,

If ¢; and e; are basis vectors in 2 different
coordinate systems, gij relates lengths in
the 2 systems.

gjj=€i " € When gjj=€; - &;

0x _ _ 912
0z g1

# 0 necessarily



Scale factors hy and h;

r=(x,z)

Coordinate unit vectors

in curvilinear coordinates
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Momentum equations

In Cartesian (x,z) coordinate system
* x-momentum equation
Opw) . Opw) _ & (na_) oP

+ U; = + Pgi =X, ),
9 "W gy, —on\lay) g8 =X

Accelerations are negligible in glacier flow, so

BB B L b s
axj naxj ax pgl z—x,y,z

In curvilinear orthogonal (X, Z) coordinate system (in 2-D)
* x-momentum equation

9 ( h: 0w\ 10P
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New Crater Glacier on Mt St Helens

Monday (May 18) was 40t anniversary of the 1980 eruption.
* Glacier began to grow in the caldera after the eruption.

* A bulge (kinematic wave) swept down the glacier in 2005.
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Price, S.F. and J.S. Walder. (2007) Modeling the dynamic response of a crater glacier to lava-
dome emplacement: Mount St Helens, Washington, USA. Ann Glaciol. 45, 21-28.



Deglacial thinning history of @ ....... o0 - Soith Pole- <<= -
Siple Dome, West Antarctica
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Coupled thermomechanical FVM model used to match data sets
* internal stratigraphy (GPR) and borehole temperature profile.
e suggested SDM had thinned by ~¥300 m during deglaciation

* Between 15ka and 14ka

Price, S.F. et al. (2007) Evidence for late Pleistocene thinning of Siple Dome, West Antarctica.

10
JGR 112, F03021, doi:10.1029/2006JF000725



Block-structured mesh

* Thisis like nesting a high-resolution weather model for WA state inside
a coarser global model (a GCM),which provides boundary conditions.

e Careis need to get fluxes right on interfaces where mesh is sub-divided.
11



Unstructured grids

Cell-centered volumes

Select vertices
* nodes are centroids

5

NaB
<
7

Vertex-based volumes

Select nodes
* Volume edges connect centroids
of figures formed by vertices

12



Deriving Finite Volume discretization

Integrate each term of general equation over Control Volume

J g( pe)dV + J div(pou)dV = J div(I" grad @)dV + J S,dV

CvV CvV CV CV

 When Cartesian volume edges aligned with coordinate
directions, we previously just directly integrated over a
volume and got boundary fluxes.

* Now we need Divergence Theorem to convert divergence
inside a generic volume into flux across the surfaces.

%(Jpq{)dV) + Jn .(pou)dA = [n . (I'" grad ¢)dA + JSOdV
Cv A A CV



Fluxes at interfaces

We want to express fluxes in terms of values at P and A.
* Butline PA joining nodes is not perpendicular to the interface ab
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Cross-diffusion

(a) . (b)
Gradient along PA is not the

same as gradient normal to the "'.
interface ab

See: Versteeg & Malalsekera (2007) Chapter 11. (c)



Control Volume at P, and
its neighboring nodes

Upwinding

Need to compare (¢p-@3) to (@,-¢,)
 But where is the upwind point B?
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Higher-order schemes, collocated grids?
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