ESS 524 Class #16

Highlights from last Monday – Shashank Today's highlights report next Wednesday – Erich

Today

- Homework progress
- Beyond the Cartesian mesh
- Structured vs unstructured grids
 - Boundary-fitted grids see Price et al. (2007)
 - Fluxes across volume edges in non-cartesian grids

Reading

• Versteeg and Malalasekara – Chapter 11 Complex Geometries

Next week

- Monday is Memorial Day
- Wednesday, Daniel Shapero will lead the first of 2 classes to introduce us to *Firedrake*, <u>https://www.firedrakeproject.org/</u>
- solving advective-diffusive problems.
- Recall that the Divergence Theorem (converting volume integrals into surface integrals) underlies virtually all numerical methods to solve pde's ^(C)

https://en.wikipedia.org/wiki/Divergence_theorem#Corollaries

Do you have access to Python, including SymPy?

 (SymPy is included in Anaconda) <u>https://www.anaconda.com/products/individual</u>

Curvilinear orthogonal boundary-fitted mesh

Lines of constant coordinate values (\hat{x}, \hat{z}) are curves in Cartesian (x, z) space

- \hat{x} and \hat{z} coordinate lines meet at right angles
- Finite-volume edges are curves
- Edges meet curves joining volume centers at right angles.

Map curvilinear geometry onto Cartesian geometry

Equations to be solved have the same form, apart from some geometric coefficients

Creating orthogonal (\hat{x}, \hat{z}) coordinate system

Curves of constant \hat{z}

• Fractional distance between bed *B*(*x*) and surface *S*(*x*)

•
$$\hat{z} = \frac{z - B(x)}{S(x) - B(x)}$$

Curves of constant \hat{x}

 Constructed orthogonal to curves of constant *2*

Metric tensor g_{ij}

 $g_{ij} = e_i \cdot e_j$ If e_i and e_j are basis vectors in an orthonormal coordinate system, $g_{ij} = \delta_{ij}$

> If e_i and e_j are basis vectors in 2 different coordinate systems, g_{ij} relates lengths in the 2 systems.

$$g_{ij} = \boldsymbol{e}_i \cdot \hat{\boldsymbol{e}}_j$$
 When $g_{ij} = \boldsymbol{e}_i \cdot \hat{\boldsymbol{e}}_j$

$$\frac{\partial x}{\partial \hat{z}} = -\frac{g_{12}}{g_{11}} \neq 0$$
 necessarily

$$\mathbf{r} = (x, z)$$

Coordinate unit vectors in curvilinear coordinates

$$\mathbf{\hat{e}}_{\hat{x}} = \frac{\partial \mathbf{r}}{\partial \hat{x}} \left\| \frac{\partial \mathbf{r}}{\partial \hat{x}} \right\|^{-1} = \frac{\partial \mathbf{r}}{\partial \hat{x}} \frac{1}{h_{\hat{x}}}$$

$$h_{\hat{x}} = \left\| \frac{\partial \mathbf{r}}{\partial \hat{x}} \right\| = \left[\left(\frac{\partial x}{\partial \hat{x}} \right)^2 + \left(\frac{\partial z}{\partial \hat{x}} \right)^2 \right]^{\frac{1}{2}}$$
$$h_{\hat{z}} = \left\| \frac{\partial \mathbf{r}}{\partial \hat{z}} \right\| = \left[\left(\frac{\partial x}{\partial \hat{z}} \right)^2 + \left(\frac{\partial z}{\partial \hat{z}} \right)^2 \right]^{\frac{1}{2}}$$

Momentum equations

In Cartesian (x,z) coordinate system

• *x*-momentum equation

$$\frac{\partial(\rho u_i)}{\partial t} + u_j \frac{\partial(\rho u_i)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\eta \frac{\partial u_i}{\partial x_j} \right) - \frac{\partial P}{\partial x_i} + \rho g_i \qquad (i = x, y, z)$$

Accelerations are negligible in glacier flow, so

$$\frac{\partial}{\partial x_j} \left(\eta \frac{\partial u_i}{\partial x_j} \right) - \frac{\partial P}{\partial x_i} + \rho g_i = 0 \qquad (i = x, y, z)$$

In curvilinear orthogonal (\hat{x}, \hat{z}) coordinate system (in 2-D)

• *x*-momentum equation

$$\frac{1}{h_{\hat{x}}h_{\hat{z}}}\frac{\partial}{\partial\hat{x}}\left(\eta\frac{h_{\hat{z}}}{h_{\hat{x}}}\frac{\partial\tilde{u}}{\partial\hat{x}}\right) - \frac{1}{h_{\hat{x}}}\frac{\partial P}{\partial\hat{x}} + \rho g_{\hat{x}} = 0,$$

New Crater Glacier on Mt St Helens

Monday (May 18) was 40th anniversary of the 1980 eruption.

- Glacier began to grow in the caldera after the eruption.
- A bulge (kinematic wave) swept down the glacier in 2005.

Price, S.F. and J.S. Walder. (2007) Modeling the dynamic response of a crater glacier to lavadome emplacement: Mount St Helens, Washington, USA. *Ann Glaciol*. 45, 21-28.

Deglacial thinning history of Siple Dome, West Antarctica

Antarctica resembles a pancake, so the transformation is barely noticeable.

• Care is needed to treat transient boundary conditions.

Coupled thermomechanical FVM model used to match data sets

- internal stratigraphy (GPR) and borehole temperature profile.
- suggested SDM had thinned by ~300 m during deglaciation
- Between 15ka and 14ka

Price, S.F. et al. (2007) Evidence for late Pleistocene thinning of Siple Dome, West Antarctica. *JGR* 112, F03021, doi:10.1029/2006JF000725

Block-structured mesh

- This is like nesting a high-resolution weather model for WA state inside a coarser global model (a GCM), which provides boundary conditions.
- Care is need to get fluxes right on interfaces where mesh is sub-divided.

Unstructured grids

Cell-centered volumes

Select vertices

• nodes are centroids

Vertex-based volumes

Select nodes

• Volume edges connect centroids of figures formed by vertices

Deriving Finite Volume discretization

Integrate each term of general equation over Control Volume

$$\int_{CV} \frac{\partial}{\partial t} (\rho \phi) dV + \int_{CV} \operatorname{div}(\rho \phi \mathbf{u}) dV = \int_{CV} \operatorname{div}(\Gamma \operatorname{grad} \phi) dV + \int_{CV} S_{\phi} dV$$

- When Cartesian volume edges aligned with coordinate directions, we previously just directly integrated over a volume and got boundary fluxes.
- Now we need Divergence Theorem to convert divergence inside a generic volume into flux across the surfaces.

$$\frac{\partial}{\partial t} \left(\int_{CV} \rho \phi dV \right) + \int_{A} \mathbf{n} \cdot (\rho \phi \mathbf{u}) dA = \int_{A} \mathbf{n} \cdot (\Gamma \operatorname{grad} \phi) dA + \int_{CV} S_{\phi} dV$$

Fluxes at interfaces

We want to express fluxes in terms of values at P and A.

• But line *PA* joining nodes is not perpendicular to the interface *ab*

Control Volume at *P*, and its neighboring nodes

Need to compare (ϕ_P - ϕ_B) to (ϕ_A - ϕ_P)

• But where is the upwind point *B*?

Higher-order schemes, collocated grids?