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ESS 524  
Introduction to Heat and Mass Flow Modeling in Earth Sciences 

 
Homework - Steady 2D Diffusion 
 
 
From the class web site, follow the MATLAB CODE link to SS 2D diffusion Practice B. 
The m-files posted there solve the steady-state diffusion equation in 2D.  
The code is designed to handle  

• spatially variable volume dimensions. 
• spatially variable diffusion coefficient K. 
• spatially variable source term S_C + S_P × phi   

 
Currently, however, the code is set up to run a simple example. 

• The volumes have uniform dimensions. 
• One boundary accepts specified values for phi. 
• The other 3 boundaries accept gradients in phi.   
• The conductivity K is uniform, except for a central block of volumes which can 

have a different (but uniform) conductivity. 
• The source terms are set to zero. 

 
As you do the following exercises, you may want to save versions of the code after each 
step .  I don’t need to see all your code for this assignment, just results (graphs) and 
some prose describing your procedures, modifications, and the results. 
 
 
1. A really simple configuration 
 Set the conductivity of the central block equal to the conductivity of its surroundings. 

• With the initially set boundary conditions, what should the solution be? 
• Show that you get the answer that you expect. 

 
2. Non-uniform node spacing 
With the source terms all zero, and uniform conductivity, set the volume widths to a non-
uniform pattern in both x and z.   I suggest creating a variation of at least a factor of 3, 
and potentially concentrating nodes around the central block. 

• Show that you still get the same answer as in #1.  
 
3.  Conductivity 

• Run the default conductivity configuration in which the central block is a good 
conductivity (K is 100 times background). 

• Make the central block a good insulator (K is 0.01 times background) and run the 
model again. 

• Show results in both cases, and explain the two outcomes in prose. 
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4. Background source S_C 
With uniform conductivity, and the initially set boundary conditions (zero flux on x=0 
and x=10) as in #3, and keeping S_P=0, set the source term S_C to a uniform but small 
positive value, for example S_C=0.1. 

• Show the result and explain in prose why it differs from your result in #1. (For 
example, discuss values at z=10, and curvature.) 

. 
5. phi-dependent source S_P ×  phi 
Set S_C=0 to turn off the background source term, and turn on the phi-dependent source 
term by setting S_P=-0.0025.  

• Show the result and explain in prose why it differs from your results in #2 and #4. 
(For example, discuss curvature and values at z=10.) 

 
6. Positive coefficient S_P 

Repeat #5, but set S_P = +0.0025. 
• Explain the differences from #5. (For example, discuss curvature and values at 

z=10.) 
 

7. Extreme Positive coefficient S_P 
Repeat #5, but now set S_P = +0.025, and then S_P = +0.25. 
• Describe what’s going on now.   

(Points to consider: How does the source term act when phi becomes negative?  
Is this physically meaningful, if for example phi was absolute temperature? If 
phi was Celsius temperature?). 

 
 
8. Boundary Conditions - I 
Change the boundary condition on the x=0 face to be a fixed phi condition, with the set 
phi varying linearly with z. At the z=0 end, it should match the value of phi set on the 
adjoining interface. Retain the specified flux conditions on the other 2 boundaries 
(nonzero flux on z=10, zero flux on x=10). 

• Find solutions using 3 different variations of your specified phi along the x=0 
boundary.  Use  
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• Explain why your solutions look reasonable in terms of your intuition about 
diffusion. 

 
 

9. Boundary Conditions - II  
Repeat #8, but set the flux BC on x=10 to be equal in magnitude, but opposite in sign to 
the specified flux on z=10. 

• Explain why your solutions look reasonable in terms of your intuition about 
diffusion. 

 


