Broadband Acoustics

John Horne University of Washington

What is Broadband?

Advantages of Broadband compared to Narrowband:

- Higher signal to noise ratio (SNR)
- Higher signal temporal resolution (target characterization)
- Continuous frequency band (more information for target classification)

Broadband Transducers

	ES18	ES38-7	ES70-7C	ES120-7C	ES200-7C	ES333-7C
Nominal frequency [kHz]	18	38	70	120	200	333
Nominal opening angle [deg]	11	7	7	7	7	7
Nominal max TX power [W]	2000	2000	750	250	150	50
Approx. frequency band [kHz]	18	34 – 45	45 – 95	90 – 170	160 – 260	280 - 450

Acoustic Pulses

Broadband Pulse Types

CHIRP pulses: energy distributed across frequencies

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Time (s)

Improving Signal Resolution

Broadband Solution: Matched Filter – a filter with bandwidth matching the pulse duration (aka Pulse Compression)

So What? Enables decoupling of known signal from unknown noise, maximizes SNR

Continuous waveBroadband
$$SNR = \frac{A_{rms}^2}{BWxN_0}$$
 $SNR = \frac{A_{rms}^2T}{BWxN_0}$

where: A=Amplitude, BW= bandwidth, N_0 = spectral density of noise, T = period of filter

Matched Filter: Pulse Compression

Adding a Matched Filter

Time series of echo returns:

$$x(t) = s(t) + n(t) \qquad \qquad s(t): \text{ signal} \\ n(t): \text{ noise}$$

Apply a filter a(t) to the time series:

$$y(t) = x(t) * a(t) = s(t) * a(t) + n(t) * a(t)$$
$$a(t) = k \ s(-t) \quad \text{A time-shifted signal}$$

$$y(t) = k r_{ss}(t) + k r_{ns}(t)$$

where $r_{ss}(t)$ is the auto-correlation function of the signal and $r_{ns}(t)$ is the cross-correlation function of the noise and the signal, which approaches to zero for a white noise, i.e. $r_{ss}(t) >> r_{ns}(t)$.

Signal Processing

Continuous wave or Tone burst

Broadband

Challenges When Using Broadband

- 1. Frequency-dependent beam width (affects integration volumes)
- 2. Non-linear effects: harmonics (avoided using up or down sweeps)
- Large increases in volume of data (EK60 0.2 GB/hr; EK80 CW 1.67 GB/hr; EK80 FM 41.67 GB/hr)
- 4. Data processing time

Example Broadband Systems

EdgeTech

Simrad EK80

Herring Survey: Gulf of Maine

120 kHz narrow band

Distance (m)

Improved Target Resolution

120 kHz narrow band

Atlantic Herring

Herring Survey: Fish Density and ID

Herring Classification: Resonance

Difference in echo amplitude is due to difference in fish density, not size, orientation, or distribution of fish

EK80 70 kHz Broadband Echogram

