
Tackling the Sonar Equation

LO: Apply characteristics of sound in water to calculate sound levels.

John K. Horne

Sonar Equation: Single Target

$V_{o} = SL + G_{1} + TS + 2D_{i}(\phi,\theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$

where:

 $\mathbf{V_o} =$ voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D}_{i}(\mathbf{\phi}, \mathbf{\theta}) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

 $40 \log(r) = two-way transmission (spreading) loss at range r$

 α = absorption coefficient

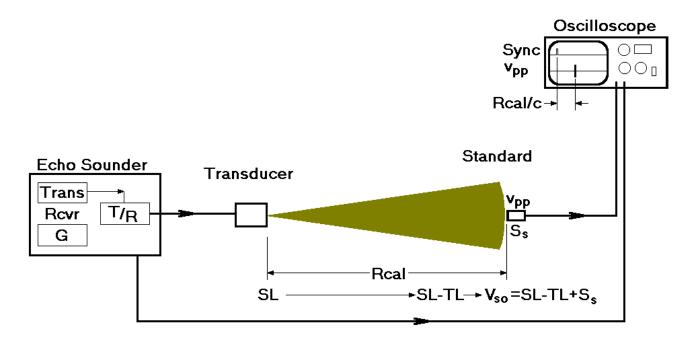
 G_{tvg} = time-varied-gain (20 or 40 log(r))

Source Level Cal Measurement

$$SL = 20log(i_{p-p}/8) + S_i$$

where:

 i_{p-p} = peak to peak current to transducer S_i = transducer transmitting response (pressure on axis at 1 m produced by 1 unit electrical power (units amps))


Source Level in sonar equation is a pressure from a source (p_o)

$$SL = 20log(p_o)$$

Example:

 $i_{p-p} = 40 A$ $S_i = 209 dB \parallel 1 \mu Pa$ $SL = 20 \log(40/8) + 209 = 223 dB \parallel 1 \mu Pa$

Source Level Measurement

The oscilloscope vpp (volts) is converted to Vso (dBv):

 $V_{so} = 20 \cdot \log(v_{pp}/2/1.414)$

The Sonar equation for the one-way transmission to the standard:

 $V_{so} = SL-TL+S_s$

 $TL_{cal} = 20 \cdot log(R_{cal}) + \alpha R_{cal}$

SS is a calibration value provided with the standard, therefore:

 $SL = V_{so} + TLcal - S_s$

$V_{o} = SL + \frac{G_{1}}{G_{1}} + TS + 2D_{i}(\phi,\theta) - 40\log(r) - 2\alpha r + G_{tvg} + G_{rec}$

where:

 $\mathbf{V}_{\mathbf{0}}$ = voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

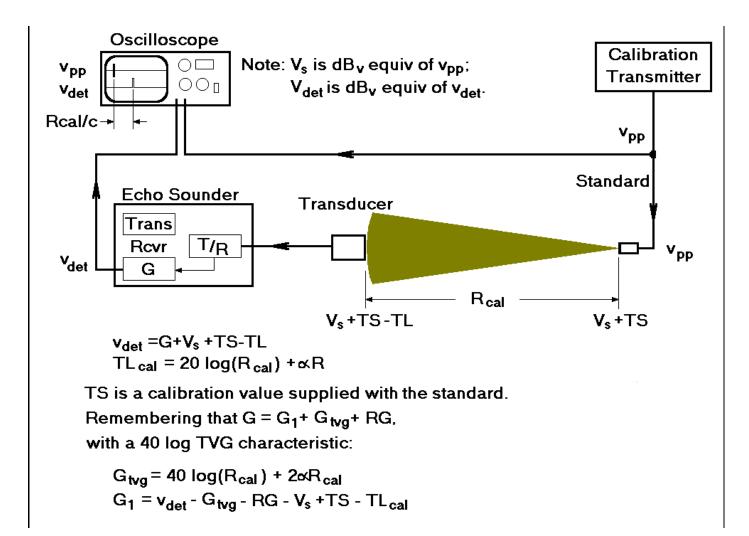
TS = target strength (acoustic size)

 $\mathbf{D}_{i}(\mathbf{\phi}, \mathbf{\theta}) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

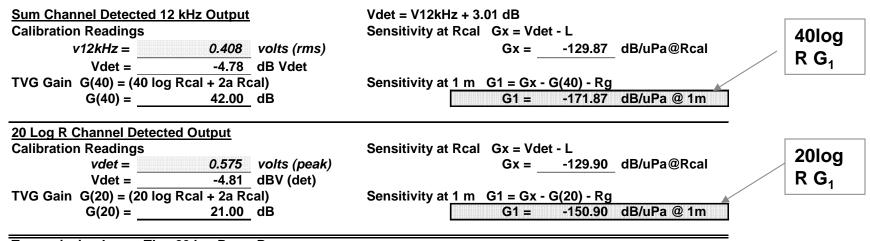
 $40 \log(r) = two-way transmission (spreading) loss at range r$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))


Through System Gain: G₁

- receive sensitivity of echosounder
- dependent on range compensation (i.e. 20 or 40 log TVG)


$$G_1 = V_{det} - L - 40log(r_{cal}) + 2\alpha r_{cal} - G_{rec}$$
 where:

 V_{det} = voltage detected L = transducer diameter r_{cal} = calibration range α = absorption loss G_{rec} = receiver gain

G₁ Measurement

Calibration Sheet: SL and G₁

Transmission Loss $TL = 20 \log Rs + aR$ TL = 15.71 dBSource Level SL = Vso - Ss + TL

Transmit	Standard Transducer		
Power (dB)	Vso (FFT) dBV (+20)	Vso (FFT) dBV (+40)	Source Level (dBuPa @ 1 m)
20.0	-8.13		216.79
14.0	-14.06		210.86
8.0		0.01	204.93
2.0		-6.56	198.36

Source Level (SL)

$V_{o} = SL + G_{1} + \frac{TS}{TS} + 2D_{i}(\phi,\theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$

where:

 $\mathbf{V}_{\mathbf{o}} =$ voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D}_{i}(\mathbf{\phi}, \mathbf{\theta}) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

 $40 \log(r) = two-way transmission (spreading) loss at range r$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Target Strength TS

- acoustic size of target (e.g. fish or zooplankton)
- ability of an object to reflect sound to the source
- linear measure: backscattering cross section σ_{bs} units m^2
- measured as a ratio of sound intensities or pressures (I $\propto p^2)$

$$\begin{split} \sigma_{bs} &= I_r/I_i = p_r^2/p_i^2 \\ TS &= 10 log(I_r) - 10 log(I_i) = 20 log(p_r) - 20 log(p_i) \\ TS &= 10 log(\sigma_{bs}) \end{split}$$

$V_o = SL + G_1 + TS + 2\frac{D_i(\phi, \theta)}{-40\log(r)} - 2\alpha r + G_{tvg} + G_{rec}$

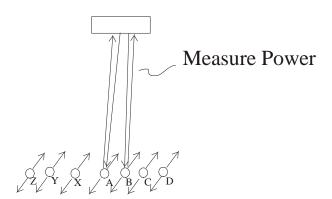
where:

 $\mathbf{V}_{\mathbf{o}} =$ voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

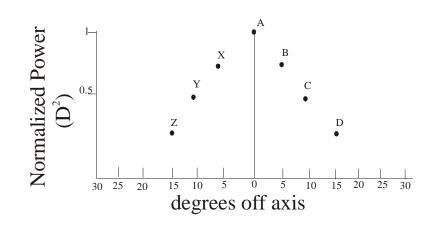
 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

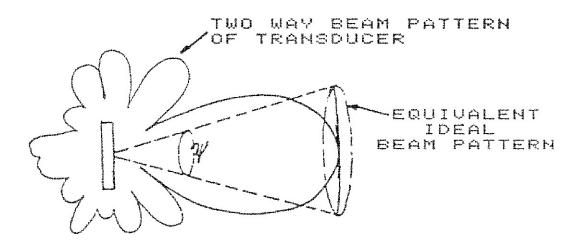

 $\mathbf{D}_{i}(\mathbf{\phi}, \mathbf{\theta}) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

40 log(r) = two-way transmission (spreading) loss at range r

 α = absorption coefficient


 $\mathbf{G}_{\mathbf{tvg}}$ = time-varied-gain (20 or 40 log(r))

Transducer Energy Transmission


monostatic transducer or transceiver: transmits and receives from same source

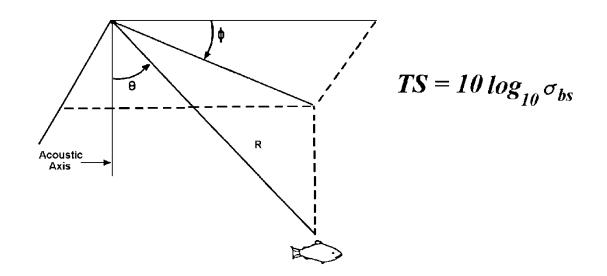
$$D_i = 10\log(D) = 10\log(I_o/I)$$

fingernail traces (i.e. boomerangs): due to differences in range and intensities

Equivalent Ideal Beam Pattern

 $\psi = \int_{4\pi} b^2 d\Omega$

 $\psi = \left(\frac{4.853}{kD}\right)^2$


 $10\log(\Psi) = 10\log(\beta_1\beta_2/5800)$ where β is active length of transducer If square or circular transducer: $10\log(\Psi) = 10\log(\beta^2/5800)$

where k is wavenumber and D diameter of transducer

Integrated Beam Pattern Factor

- one-way loss in signal intensity due to the angle of the target relative to the acoustic axis

$$I = k \frac{10^{-2\alpha R}}{R^4} b^2(\theta, \phi) \sigma_{bs}$$

Effect of Beam Pattern

- transmit response (i.e. acoustic level) is highest along acoustic axis
- receive response (i.e. echo level) is highest along acoustic axis
- echo received from a target will decrease off axis due to transmit and receive losses
- echo amplitude of a target depends on acoustic size of fish and position in beam

 $V_o = SL + G_1 + TS + 2D_i(\phi, \theta) - \frac{40\log(r)}{2} - 2\alpha r + G_{tvg} + G_{rec}$

where:

 $\mathbf{V}_{\mathbf{o}} =$ voltage out (also EL echo level)

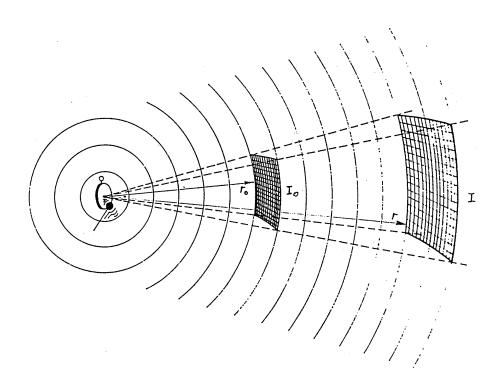
SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D}_{i}(\mathbf{\phi}, \mathbf{\theta}) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

 $40 \log(r) = two-way transmission (spreading) loss at range r$


 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Transmission Loss

Geometric Spreading

- pressure decreases as the 1/distance from source
- spherical spreading from a point source (e.g. transducer)
- 2-way spreading increases as range²

$$I_o/I = (r/r_o)^2$$
$$TL = 10log(I_o/I) = 20log(r/r_o)$$
if $r_o = 1$ m
then one way TL = 20 log(r)
and two way TL = 40log(r)

$V_o = SL + G_1 + TS + 2D_i(\phi,\theta) - 40\log(r) - \frac{2\alpha r}{2\alpha r} + G_{tvg} + G_{rec}$

where:

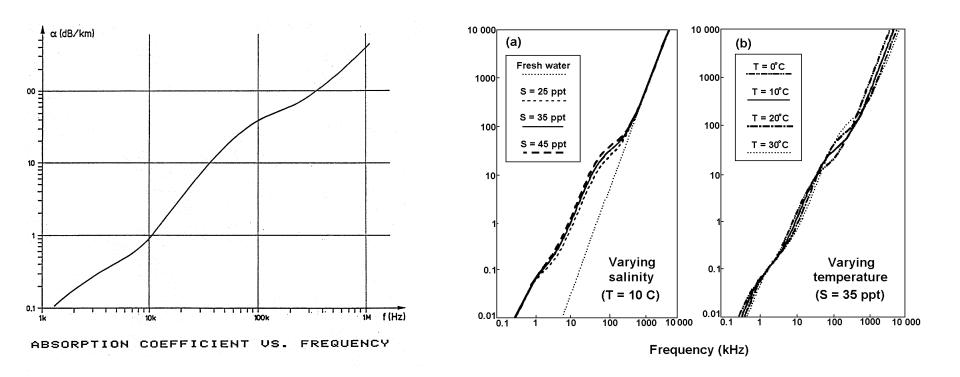
 $\mathbf{V}_{\mathbf{o}} =$ voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D}_{\mathbf{i}}(\mathbf{\phi}, \mathbf{\theta}) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

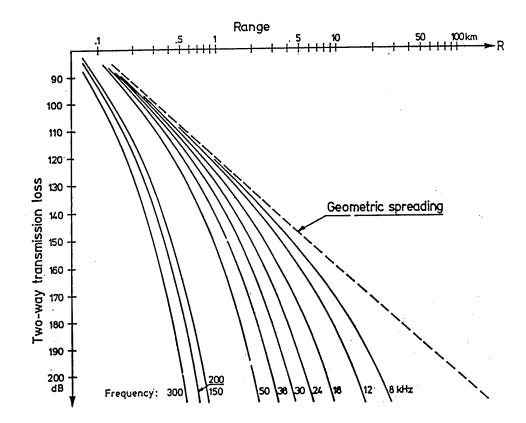

 $40 \log(r) = two-way transmission (spreading) loss at range r$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Absorption

- attenuation of pressure due to friction (α , units nepers/m or dB/m))
- proportional to range
- dependent on frequency: increases proportional to the square of frequency
- higher in salt water than fresh water


Absorption Loss

One way: αr , units dBm⁻¹

Two way: $2\alpha r$, units dBm^{-1}

Total Transmission Loss

Total transmission loss (two way): $40 \log(r) + 2\alpha r$

TWO WAY TRANSMISSION LOSS VS. FREQUENCY.

$V_{o} = SL + G_{1} + TS + 2D_{i}(\phi,\theta) - 40\log(r) - 2\alpha r + \frac{G_{tvg}}{G_{tvg}} + G_{rec}$

where:

 $\mathbf{V}_{\mathbf{o}} =$ voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D}_{i}(\mathbf{\phi}, \mathbf{\theta}) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

 $40 \log(r) = two-way transmission (spreading) loss at range r$

 α = absorption coefficient

 $\mathbf{G}_{\mathbf{tvg}}$ = time-varied-gain (20 or 40 log(r))

Range Compensation: TVG

Time Varied Gain

- amplification applied to received echo to compensate for transmission loss due to beam spreading
- constant TVG is main reason why 'scientific' echosounders cost lots

Single target: small relative to wavelength individual targets can be resolved

> one way spreading loss = $1/r^2$ two way spreading loss = $1/r^4$

Log form: $10\log(r^4) = 40\log(r)$

Range Compensation: TVG

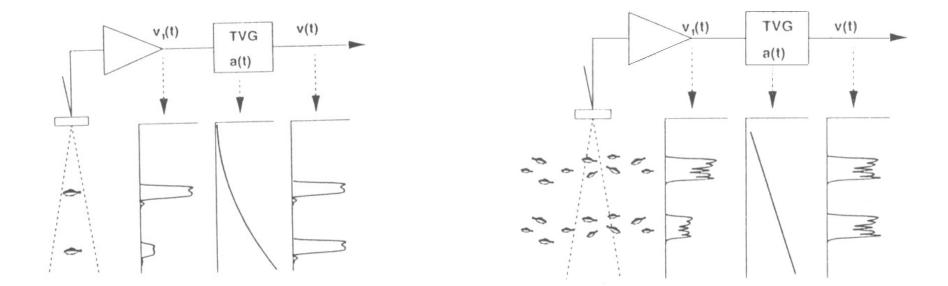
Multiple targets: assumes constant density individual targets can not be resolved spreading is range dependent collection is large relative to beam width

> one way spreading loss = 1/rtwo way spreading loss = $1/r^2$

Log form: $10\log(r^2) = 20\log(r)$

TVG Again

20 log(r)


- Echo level for fish at range r α $1/r^2$
- (Echo level)² α 1/r⁴

- # fish @ r increases with area of beam (i.e. $1/r^2$) So, squared signal $\alpha r^2(1/r^4) = 1/r^2$ Squared signal in dB $\alpha 10\log(1/r^2) = -20\log(r)$

G_{tvg}: Time Varied Gain

Individual targets: $40\log(r)$

Multiple targets: 20log(r)

where $v_1(t)$ = uncompensated voltage, a(t) = receiver gain, v(t) = compensated voltage

 $V_{o} = SL + G_{1} + TS + 2D_{i}(\phi,\theta) - 40\log(r) - 2\alpha r + G_{tvg} + \frac{G_{rec}}{G_{rec}}$

where:

 $\mathbf{V}_{\mathbf{o}} =$ voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D}_{i}(\mathbf{\phi}, \mathbf{\theta}) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

 $40 \log(r) = two-way transmission (spreading) loss at range r$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

G_{rec}: System Receiver Gain

- amplification applied to received echo to center dynamic range of echosounder
- some manufacturers user selected: range -12 dB to +12 dB
- other manufacturers user sets minimum detected and then adds range (typically 36 dB)

Sonar Equation Example

You are on the NOAA R/V Oscar Dyson in the Gulf of Alaska. You are interested in the length distribution of juvenile walleye pollock in Barnabus Trough. You have a 120 kHz echosounder and the Traynor et al. publication that tells you: $TS = 20log(L_{cm}) - 66$. You measure a target strength of -45 dB re 1 μ Pa from a fish at 100m range. The water is 10° C with a salinity of 35, resulting in an absorption coefficient of 38.7 dB/m. The system is set so that you have a source level of 216.78 dB re 1 μ Pa. From the transducer calibration parameter sheet you know that the directivity index is -5 dB re 1 μ Pa, and the through system gain is 171.87 dB re 1 µPa.

What is the voltage recorded on your echosounder and what is the length of the fish?

Juvenile Walleye Pollock Length

 $V_o = SL + G_1 + TS + 2D_i(\phi,\theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$

Frequency = 120 kHz Target Range = 100 m H₂O Temp = 10°C Salinity = 35 ppt

 V_0 = voltage out (also EL echo level)

where:

 $SL = 216.78 \text{ dB re } 1 \mu Pa$ transducer source level

 $G_1 = -171.87 \text{ dB re } 1 \mu Pa$ through system gain, at 1m

 $TS = -45 \text{ dB re } 1 \mu Pa$ target strength

 $\mathbf{D}_{i}(\mathbf{\phi}, \mathbf{\theta}) = -5 \text{ dB re } 1 \mu \text{Pa}$ directivity index

40 log(r) = 80 dB re 1 μ Pa two-way transmission loss at range r

 $\alpha = 0.0387 \text{ dB/m}$ (120 kHz, 10° C, 35 ppt) absorption coefficient

 $G_{tvg} = 80 \text{ dB re } 1 \mu Pa 40 \log(r) \text{ time-varied-gain}$

 $\mathbf{G}_{rec} = 0 \text{ dB re } 1 \mu Pa$ receiver gain

Sonar Equation Example

 $V_o = SL + G_1 + TS + 2D(\phi,\theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$

 $V_o = 216.79 + (-171.87) + (-45) + 2(-5) - 80 - 7.74 + 80 + 0$

 $V_{o} = -17.82 \text{ dB}_{v}$

 $20\log(volts) = dB_v$ $10^{dBv/20} = volts$

10^{dBv/20} = 0.12853 volts

TS = 20log(L)-66 L = 11.22 cm