Lab 1A. Create a simple Java application using JBuilder

In this lab exercise, we’ll learn how to use a Java integrated development environment
(IDE), Borland JBuilder 2005, to develop a simple Java application — the hello world
example from Jo Wood’s book “Java Programming for Spatial Sciences”.

The exercise has two parts: the first one is to make a program that prints out on the screen
some messages. The second is to make a program that opens up a window and display
some messages in that window. See appendix for Java source code provided by Jo Wood.
(http://oldspice.soi.city.ac.uk/jpss/source/)

Part 1: make the simplest Java application — Hello World
1. Start Jbuilder.
2. Select File > New

(W Object Gallery.
General Project
.
B B
&
Mo BEDl BEQ]
=r-Enterprise s Project for Existing Pull Project from
CORBA Code Subversion
EJB
Archive
Build
=] k=] [-=] [:=lome
Test GE] [H e Re el
Weh Services
Pull Project from Pull Project from Pull Project from Import YisualCafe
WSS CYS StarTeam Project

Project Group

[OK][Cancel ” Help]

You might want to look at all the options you have on this dialog. The “Help” button will
give you more information about the selected option.

3. In the dialog box, select Project [1 Project, click OK

4. In the following dialog box, type in the name of the project and path that you want to
save your project. A JBuilder project contains all the resources you need to build, deploy,
and document your Java application. You can, and in many cases should, explore and edit

these resources.

A folder with the application name will be created in the directory you designate.

@ Project Wizard - Step 1 of 3 3]

Select name and template for your new JBuilder project

Enter a name for your project and the path to the directory where it is to be
saved. You can optionally choose an existing project as a template for the initial
default values used in this wizard.

Narme: v HeIIoWorId|

Directory: k::mssn-lelloWorld Vl[- J

Template: [(Default project) V][il

Add project to active project group

Generate project notes file

= Back [Next =][Finish][Cancel][Help]

5. In the next steps, review the fields and accept the defaults.
Now you have a blank project.
Now we will create a new class - class Hello1

6. Right-click on the project name “HelloWorld.jpx”, select New [Class

IE_“E' E % @ HelloWorld jpx ~ ’ ‘
I
8 Heloe (2 add Files / Packages / Classes... 11 Interface...
Rename "Hellowworld. jpx"... # Package...
Clase Project "HelloWorld. jpx" E] File...
¥ Clean ¥@ Directary...
© View Todos E] Folder...
@ Fortify Software Security Analysis a Directory View...
Properties...

7. Fill in class name “Hello1”, type in “helloworld” as package name. Select “Generate
main method”, deselect “Generate default constructor’.

Package is a container of classes. You can think of it as a folder, which contains Java
class files.

@ Class Wizard 3]

(= Create a new Java class

Fill in the fields below to set the package, hame, base class, and other options for the Java class
which will be created.

[Class information

Class name: | Hello1

Package: helloworld v [

Base class: bava.lang.Objecl v] =
~Options

Public [[] Generate defautt constructor

Generate main method E] Override superclass constructors

Generate header comments Override abstract methods

I OK][Cancel J[Help]

Note: Java is case sensitive, so Hellol is different from hellol

Now you can see the structure of the class

@ JBuilder 2005 - C:/465/HelloWorld/src/helloworld/Hellol.java EEx
File Edit Search Refactor View Project Run Team Enterprise Tools Window Help Purchase
DN-EE- DR -S|~ @B % M v[%
%‘a'\@ bR - @‘%. ® -
e B || 3% Helot |

IE3° E % 1 backage helloworld;

@ Helloworldjpx ~) I

15 public class Hellol {

© @ <Project Source> 16 public static void meiz(String[] args) {

‘;ﬂ'@‘ helloworld 17 Hellol hellol = new Hellol():

@) Helloworld.htrml 0e)

= 19

Files | project | }

(L] EREINE

@-@llmpons

=@ & Hellot

oty ! main(Stringl]
&)< \ >
Hello1 java Modified Insert 1:1 “fcoa ~[Q ~[O

< | 5 || source | Design | Bean | UML | Doc | History

&3~
At this point let’s take a look at JBuilder’s IDE: from top down, after menus and tool
buttons, you see three panes: two on the left and one on the right. Upper left is the project
explorer, which displays all project resources and you can access the functionalities of
manipulating these resources by right-click on the item. Lower left is the structure view
of the content displayed on the right pane, which is the working area you do the detailed
editing.

Now we can finish up Hello1.class:

8. Copy and paste the code found in Jo Wood’s source code Hellol.java into the main()
method of your class Hello1. Replace whatever exists in the body of main(){}. LEAVE

the brackets { and }.
System.out.printin("Java Programming for Spatial Scientists");

System.out.printin("");
System.out.printin("Program One: Hello World.");

9. Save your work.

63 Project |
T e = Helloworidjpx ~ Tes % Hellowarldjox ~
[Helloworld jpx) Helloworld jox
+-({ <Project Sources +- @0 <Project Source=
= hellowworld =@ helloworld
3, TIER™ 5, [~
@ Hellowiorld h New » @ Hellowon New »
Open Open
Rename "Hellol.java"... Rename "Hellol.java"...
*£ Export as a Web Service *£ Export as a Web Service
Delete File "Hellol. java" Delete File "Hellol.java"
P Run using defaults > Run using defaults k
b5 Debug using defaults b5 Debug using defaults
b Optimize using defaults b Optimize using defaults
Files | Project ¥, Clean Files| project | <% Clean
T BT e
m [[Rebuid wn [|| . Rebuid
gualiGibs, - eEIE
+-[35] Imports k=) Format "Hellol. java" 3] impont b2 Format "Hellol. java"
. =@ of Helot Properties 1 ° ;Ppo s Properties
10. Compile the class & B i perties. . and run it: ® o Heko perties. .

At the bottom you can see the output

How Java program runs:

When the interpreter executes a class, it looks for a particular method by the name of
main, which will sound familiar to C programmers. The main method is passed as a
parameter to an array of strings (similar to the argv[] of C), and is declared as a static
method (more on this in a later tutorial).

To output text from the program, we execute the ' println ' method of System.out, which
is Java's output stream. Unix users will appreciate the theory behind such a stream, as it is
actually standard output. For those who are instead used to the Wintel platform, it will
write the string passed to it to the user's screen.

Part 2. make an application with a window
Now repeat from step 6 and make another class Hello2, this time copy all the code,
except the package line, of Hello2.java from Jo Wood’s sample code.

Try to understand the code:

- to open up a window, class Hello2 needs to “extends JFrame™;

- JFrame is a class that exists in package javax.swing, this why “import javax.swing.*”;
- “super(windowTitle)” creates a new instance of JFrame with the given title

- Message “Program two” and “Hello again” is displayed as labels in the window

- Class “Container” and “BorderLayout” come from package java.awt;

Complete Java API documentation can be found at Sun website:
http://java.sun.com/j2se/1.4.2/docs/api/index.html

Run this class, what do you get?

Things to think about:

1. Files and folders

Folders: what’s in HelloWorld? What’s in classes\helloworld? What’s in src\helloworld?
File types: .java .class .jpx .html

helloworld EE)E) | & helloworld BE®E
n L3
oy o

File Edit View Favorites Tools Help File Edit View Favorites Tools Help
Qeack ~) 2| X) @B X Psearch ? Qeack ~ O 2| X) @ X Psearch >
Address |5 C:\d6S\Hellowor ldysrcyhellowor ld v Go Address |3 C:\a65\Helloworldiclassesthelloworld v . Go
Folders 2 jIﬁlame Folders X @Name
. ¥ Hellol. java Hellol.class
1) 465 » 1) 465 ~
= £ Hellowarld Siskaize = 2 Helloworld izl
= 1) classes = 2 classes
(22 helloworld (&) helloworld
| package cache |2 package cache
=) src =) src
(] helloworld) helloworld
1) ArcDoc 1) ArcDoc
[arcgis (2 arcgis
| ArcScripts I [ArcScripts v
< > < > < > < >
2 objects (Disk free spa 1.65 KB 4 My Computer 2 objects (Disk free spa 1.59 KB 4 My Computer
Packages and classes
Dependencies: import
Common Java Libraries: java.awt java.swing

Appendix: Source code
Hellol.java

/**
* Hellol - Program to display a simple text message on the screen.
* Author Jo Wood.

* Version 1.1, 14th September, 1999
*
**/

public class Hellol

{
// All java applications have a main() method.
// This one displays a simple message.
public static void main(String args[])
{
System.out.println("Java Programming for Spatial Scientists");
System.out.println("==== === ")
System.out.println("");
System.out.println("Program One: Hello World.");
}
¥
Hello2.java
import java.awt.*; // Needed to use graphics classes.

import javax.swing.*;

/**

Hello2 - Program to create a graphics window and display a
simple text message on the screen.

Author Jo Wood.

Version 1.2, 25th August, 2001

I I

***/

public class Hello2 extends JFrame

{
// All java applications have a main() method.
// This one creates a graphics window.

public static void main(String args[])

{

new Hello2("Java for Spatial Sciences");

}

// This method has the same name as the class (Hello2) and is
// called a constructor. In this case it sets the window title.

public Hello2(String windowTitle)

{
// Initialise window.
super (windowTitle);
setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
Container window = getContentPane();
// Add two lines to the window.
window.add(new JLabel(" Program two:"),BorderLayout.NORTH) ;
window.add(new JLabel(" Hello again."),BorderLayout.CENTER);
// Size window and make it visible.
pack();
setVisible(true);

}

Lab 1B. Explore the Spatial Modeling Package using JBuilder

In this lab exercise, you are asked to explore the spatial modeling package, which will be
used throughout this course. The spatial modeling package contains five classes and one
interface:

public class Footprint{}

public class Gazeteer{}

public class GISVector{}

public class SpatialObject{}

public class VectorMap{}

public interface SpatialModel { }

In this exploration, you are asked to create a new project in JBuilder, and import the
package, jwo.jpss.spatial, following the directions below:

1. Similar to Lab 1A, create a new project, using File > New. Name your project,
spatialTest yourinitials. Designate the location of the new project folder within your
student storage on the P:/ drive and accept all default settings. JBuilder creates a
folder in your student storage, with the name you specified.

2. Open Windows Explorer and point to the new project folder you just created. Open
the project folder and create a new folder called “src”.

3. Since we already have the source code for these six .java files, we do not need to
create a new class. Using Windows Explorer copy the package folder called “jwo”
from P:/geog465win05/lab1b into the spatialTest yourinitials/src folder you
designated in the P:/ drive.

4. Return to JBuilder, and on the project explorer (the left pane of the screen), click the
refresh image at the top of the pane. The folder you imported in Windows Explorer
should now be visible as a package, under the name: “jwo.jpss.spatial”’. Expand the
package using the “+” symbol to display the six .java files.

5. Begin exploring this package by double clicking on any of the .java files to view the
source code. Try to identify the following items:

a. Constructor methods
b. Accessor methods

Mutator methods

Classes which extends other classes

Classes which implements interfaces

Classes versus instantiated objects

g. Constants

6. After you feel comfortable with the source code, right click on the package in the

project explorer pane, and select “Make” to compile the package.

R

