ESS 595B: Polar Firn: Thermal, Mechanical and Chemical Properties

Fall Glaciology Seminar

First Meeting: Herron, M.M. and C.C. Langway. Firn Densification-An Empirical Model. J. Glac. 1980.

Presenters: Ed and Jessica

...a little bookkeeping

Potential topics and papers:

- Densification modelling:
 - Steady state
 - Herron and Langway 1980
 - Spencer et al. 2001

Time dependent

- Arthern and Wingham 1998
- Cuffey 2001
- Goujon et al. 2004
- Li Jun and Jay Zwally 2004, Zwally and Li Jun 2002
- Reeh 2008, In press
- Firn chemistry:
 - Severinghaus et al. 1998
 - Papers from physics of Ice Core Records: Schwander, Blunier, Arnaud

Herron and Langway: Major concepts

Developed empirical model for 2 densification zones, defined by 2 'critical densities'.

Steady-state model:

accumulation-rate and temperature don't change, coefficients remain constant, tuned to current density profiles

Pros: model is simple to use, quick to compute Cons: questionable outside of calibration

Zone	Density (kg/m ³)	Dominate mechanism(s) for densification
1	ρ < 550	Grain boundary sliding, packing
2	550 < ρ < 800	Unknown in HL Power-law creep (Artz, 1982, 1983) Pressure sintering
3	$\rho > 800$	Bubble compression

Selected sites from Greenland and Antarctica Temp range: -57 to -15F Accumulation rates A range: 0.022-0.5 m water year^-1

Location Longitude References for p, T, A data Latitude T Site m water year-I °C Greenland 39° 36' W. This work 74° 37' N. North Central O.II -31.7 71° 07' N. 37° 19' W. This work; personal communi-0.265 -30 Crête cation from B. L. Hansen; Hammer and others (1978); Reeh and others (1978) 76° 59' N. 56° 04' W. Langway (1970) Site 2 0.4 -23.3 70° 18' N. 44° 19' W. This work; personal communi-Milcent 0.50 -22 cation from B. L. Hansen; Hammer and others (1978); Reeh and others (1978) This work; personal communi-South Dome 63° 33' N. 44° 36' W. 0.50 -21.5 cation from W. Dansgaard 65° 11' N. 43° 50' W. This work; personal communi--19.6 Dye 3 0.50 cation from B. L. Hansen; Hammer and others (1978); Reeh and others (1978) This work -16.7 66° 29' N. 46° 20' W. Dye 2 0.5

TABLE I. GLACIOLOGICAL DATA FOR GREENLAND AND ANTARCTIC ICE CORES

Map of 8/17 locations

Appendix linear relationship between depth and

 $\ln\!\!\left(\frac{\rho}{\rho_i-\rho}\right)$

for 17 Greenland and Antarctic sites

Fig. A1. Depth-ln $[\rho/(\rho_1 - \rho)]$ data for inland Greenland sites.

Find coefficients C and C', derivative of lines, for 2 ranges of densities

$$C = rac{\mathrm{d} \ln \left[
ho/(
ho_1 -
ho)
ight]}{\mathrm{d}h}$$
 for $ho < 0.55 \mathrm{~Mg~m^{-3}},$
 $C' = rac{\mathrm{d} \ln \left[
ho/(
ho_1 -
ho)
ight]}{\mathrm{d}h}$ for 0.55 Mg m⁻³ $<
ho < 0.8 \mathrm{~Mg~m^{-3}},$

Fit linear depth-density curves

Now, solve for densification with time

 $d\rho/dt = \frac{CA}{
ho_i} (
ho_i -
ho), \qquad
ho < 0.55 Mg m^{-3},$

 $d\rho/dt = \frac{C'A}{\rho_i} (\rho_i - \rho),$ 0.55 Mg m⁻³ < ρ < 0.8 Mg m⁻³.

By rearranging and substituting into Schytt equation 1

$$\frac{\mathrm{d}\rho}{\rho_{\mathrm{i}}-\rho}=\mathrm{constant}\;\rho\;\mathrm{d}h,$$

Can then solve for temp and accum-rate dependencies, through coefficients k_0 , k_1 , a and b

$$\begin{split} \mathrm{d}\rho/\mathrm{d}t &= k_0 A^a(\rho_{\rm i} - \rho), \qquad \rho < \mathrm{0.55~Mg~m^{-3}}, \\ \mathrm{d}\rho/\mathrm{d}t &= k_{\rm I} A^b(\rho_{\rm i} - \rho), \qquad \mathrm{0.55~Mg~m^{-3}} < \rho < \mathrm{0.8~Mg~m^{-3}}, \end{split}$$

Fit linear depth-density curves

Can then solve for temp and accum-rate dependencies, through coefficients k_0 , k_1 , a and b $d\rho/dt = k_0 A^a(\rho_i - \rho), \qquad \rho < 0.55 \text{ Mg m}^{-3},$ $d\rho/dt = k_1 A^b(\rho_1 - \rho),$ 0.55 Mg m⁻³ < ρ < 0.8 Mg m⁻³, 0.55<p<0.8 k_0, k_1 are arrhenius-type rate constants dependent on temp (Fig 1) En k Activation energies, E $k_0 = 11 \exp$ p<0.55 $k_{\rm I} = 575 \exp \left[-\frac{21 \, 400}{RT} \right],$ 40 4.2 R = gas constant, T = temp (K $\frac{1}{7} \times 10^{3} (K^{-1})$ Fig. 1. Arrhenius plots for k_0 (lower line) and k_1 (upper line). 17 sites in Greenland and Antarctica plotted for 2 density regions to determine k coefficients, dependent on T

Fit linear depth-density curves

Can then solve for temp and accum-rate dependencies, through coefficients k_0 , k_1 , a and b $d\rho/dt = k_0 A^a(\rho_1 - \rho)$, $\rho < 0.55 \text{ Mg m}^{-3}$, $d\rho/dt = k_1 A^b(\rho_1 - \rho)$, $0.55 \text{ Mg m}^{-3} < \rho < 0.8 \text{ Mg m}^{-3}$,

a and b are determined by comparing slopes for each stage of densification at sites of nearly equivalent temp and different accum. rates, shown in table II

$$a = \frac{\ln \left(C_{\mathrm{I}}/C_{2}\right)}{\ln \left(A_{\mathrm{I}}/A_{2}\right)} + \mathrm{I},$$

b solved using same equation using C'

Table II. Values of the constants a and b derived from accumulation rates and slopes derived from graphs of depth against $\ln \left[\rho/(\rho_1 - \rho)\right]$ for pairs of sites

Site pair	а	Ь
Site 2-RID	0.8	0.3
Site 2-Milcent	1.2	ID
Site 2-LAS	1.0	0.6
Site 2-C-7-3	1.1	0.6
C-7-3-LAS	1.2	0.7
C-7-3-Old Byrd	1.4	0.4
Old Byrd-J-9	1.4	0.3
RID-Milcent	0.9	0.5
RID-South Dome	ID*	0.3
LAS-Milcent	I.I	ID
Wilkes S2-Dye 3	ID	0.5
Crête-North Central	ID	0.6
verage and standard deviation	1.1±0.2	0.5±0.2
* ID = Insufficient data.		

Table II. Values of the constants a and b derived from accumulation rates and slopes derived from graphs of depth against $\ln \left[\rho/(\rho_i - \rho)\right]$ for pairs of sites

Site pair	a	Ь
Site 2-RID	0.8	0.3
Site 2-Milcent	1.2	ID
Site 2–LAS	1.0	0.6
Site 2–C-7-3	1.1	0.6
C-7-3-LAS	1.2	0.7
C-7-3-Old Byrd	1.4	0.4
Old Byrd-J-9	1.4	0.3
RID-Milcent	0.9	0.5
RID-South Dome	ID*	0.3
LAS-Milcent	I.I	ID
Wilkes S2-Dye 3	ID	0.5
Crête-North Central	ID	0.6
verage and standard deviation	1.1±0.2	0.5±0.2

* ID = Insufficient data.

A

Now we can calculate depth and time for given density in density zones 1 and 2 eqns (8-11).

Can estimate accumulation rate in second zone based on slope of C', eqn (12)

Fig. 2. Predicted depth-ln $[\rho/(\rho_1 - \rho)]$ curves for: (a) various temperatures at a constant accumulation rate of 0.30 m water year⁻¹ and initial density of 0.36 Mg m⁻³, and (b) various accumulation rates (in m water year⁻¹) at a constant temperature of -30° C and initial density 0.36 Mg m⁻³.

Same plot as Appendix, here with experimental data

T and b usually coupled, increase T, increase A, affect is opposite on densification rate.

Fig. 3. Depth-density curves for: (a) Greenland, (b) inland Antarctic, and (c) Ross Ice Shelf ice cores. Initial density, accumulation rate, and temperature values shown were used to generate model curves shown as solid lines. Arrows in the Site 2 profile refer to pronounced melt features (Langway, 1970).

Depth m	Crête, Greenland		Site 2, Greenland		Milcent, Greenland		Byrd Station, Antarctica		Little America V, Antarctica	
	Predicted age	Observed ¹ age	Predicted age	Observed ² age	Predicted age	Observed ³ age	Predicted age	Observed ⁴ age	Predicted age	Observed ⁴ age
0 10 20 30 40	1957 1936 1912 1887	1974-5 1958 1938 1914 1888	1945 1931 1915 1898	1957 c. 1945 c. 1930 c. 1915 c. 1900	1964 1952 1940 1926	1973-5 1964 1952 1939 1925	1929 1892 1850 1804	1959 1927 1888 1845 1802	1938 1912 1882 1853 (39 m)	1959 1937 1912 1884 1854 (39 m)
50 60 ¹ Per ² Lar ³ Har ⁴ Gov	1860 1832 sonal comp ngway (197 mmer and w (1968).	1861 1831 munication 70). others (19	1880 1860 from W. 78); Reeh	c. 1880 c. 1860 Dansgaard and others	1912 1896 (1978).	1911 1894	1754 1703	1754 1703		

TABLE III. OBSERVED AND PREDICTED AGES FOR FIVE ICE CORES FROM GREENLAND AND ANTARCTICA

Further tested model using 5 ice cores with:

predicted dates: model equations 9 and 11

observed dates: stratigraphy, stable O isotopes and ion concentrations

Agreement within 5 years between predicted and observed dates

Ages go back 256 years, (recent enough for steady-state assumption?)

	<i>Accumulation rate</i> m water year ⁻¹						
Site	Observed	Predicted	Deviation	% deviation			
	G	reenland					
North Central	0.13	0.11	-0.02	15			
Crête	0.26	0.22	-0.04	15			
Milcent	0.50	0.40	-0.10	20			
Site 2	0.40	0.39	-0.01	3			
South Dome	0.50	0.61	+0.11	22			
Dye 3	0.50	0.61	+0.11	22			
Dye 2	0.5	0.45	-0.05	10			
	A	ntarctica					
Vostok	0.022	0.019	-0.003	14			
South Pole	0.07	0.09	+0.02	29			
Old Byrd Station	0.16	0.19	+0.03	19			
Roosevelt Island Dome	0.2	0.16	-0.04	20			
Wilkes S-2	0.133	0.15	+0.017	13			
	Antarc	tic ice shelves					
I-9	0.09	0.08	-0.01	II			
C-7-3	0.11	0.13	+0.02	18			
Little America V	0.22	0.22	0.00	0			
Maudheim	0.37	0.37	0.00	0			
Roi Baudouin	0.38	0.54	+0.16	42			

(equation 12) TABLE IV. OBSERVED AND PREDICTED ACCUMULATION RATES

Average deviation between predicted and modelled values is 0.04my⁻¹, with an average of 16%

Max deviation is 0.16my⁻¹, with 42% deviation, (noted to have abundant ice layers)

HL conclusions

- Empirical rate equations firn densification of 1st and 2nd stage have been developed for 17 sites in GL and Ant.
 - Require inputs of initial density, accumulation rate and temp at 10m depth
- Can predict depth-density curves and depth-age relationships
- Deviations between observed and predicted depth-density may indicate changing climate conditions
- High densities at site 2, GL are melt layers from warm summers
- Synchronous event with increased A occurring in 1880s may be seen in Old Byrd, Little America V, and potentially C-7-3, J-9, and Roosevelt Island Dome.