Evolutionary Genetics (GENOME 453) MWF 11:30-12:20 am, S110 Foege Instructor: Dr. Mary Kuhner Office: S420C Foege Hours: TBA, or by appointment Phone: (206) 543-8751 Email: mkkuhner@uw.edu Web: http://courses.washington.edu/gs453/

Lecture slides will be on the web page, usually by the morning of the lecture.

Textbook

- No textbook for this course
- Three possibly useful books:
 - Felsenstein, *Theoretical Evolutionary Genetics*, free on the web at http://evolution.gs.washington.edu/pgbook/pgbook.html
 - Hartl and Clark, Principles of Population Genetics
 - Graur and Li, Fundamentals of Molecular Evolution
- The syllabus lists possible readings from these books (mainly Felsenstein) for students who want additional readings; they are not required

- 9 assignments
- Handed out Friday, due following Friday
- Lowest of 9 will be dropped
- Worth 1/3 of course grade
- If you don't do the homework, you will probably fail the exams
- You may work together, but be sure you individually know how to solve the problems

- Midterm and non-comprehensive final count 1/3 each
- Closed book and notes; equation sheet will be provided
- Calculators strongly encouraged
- Homework and practice problems are the best exam prep

- Wednesday after class? Friday before class?
- (Most HW due dates are on Fridays)
- Additional times by appointment

Course Plan

- First half: evolutionary forces
 - Inheritance
 - Mutation
 - Natural selection
 - Genetic drift
 - Population structure
- Second half: forces in action
 - Evolution of novelty
 - Sex, sexual selection, sexual competition
 - Selfish DNA
 - Genome evolution
 - Speciation
 - Evolution and public health
 - Phylogenetics

This lecture

- Why evolution is cool
- Why superficial appeals to evolution are bad
- Brief review of meiosis
- Brief review of probability

- Gets away from purely descriptive view of biology
- Allows "Why?" as question (rare in science!)
- Full of paradoxes, puzzles, surprising results
- Practical importance:
 - Evolution of drug and pesticide resistance
 - Evolution of new pathogens (e.g. bird flu, Ebola virus)
 - Understanding humans through understanding other systems
 - Predicting effects of human policies
 - Evolution of somatic cells into cancer

- Off-the-cuff "evolutionary" explanations are popular
- If you can't validate it, it's just a story
- Organisms are complex and what seems plausible to us is often wildly wrong

"Africans are lactose-intolerant because milk spoils so quickly in a hot environment that it's better not to drink it, so there was natural selection against milk-drinking." "Africans are lactose-intolerant because milk spoils so quickly in a hot environment that it's better not to drink it, so there was natural selection against milk-drinking."

- What is the ancestral state of lactose tolerance versus intolerance?
- How is tolerance/intolerance distributed worldwide?
- Does lactose intolerance effectively discourage milk drinking?
- Historically, is milk drinking the main form of milk consumption?

Be particularly skeptical of unsupported theories if they involve race or gender!

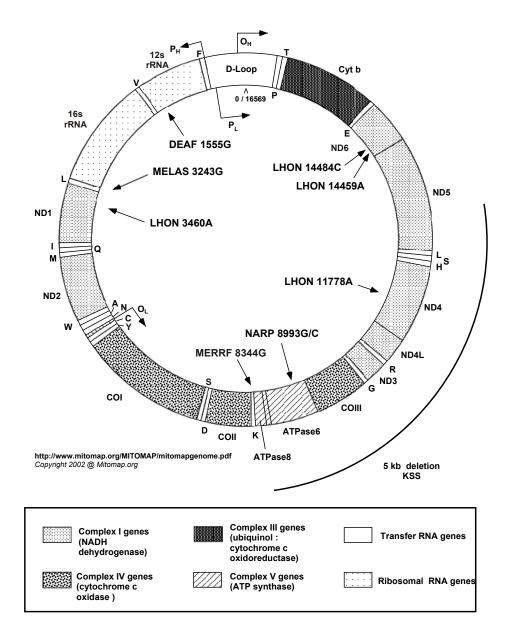
How to validate an evolutionary hypothesis:

- Show that it works out mathematically
- Make predictions based on the hypothesis and test them
 - A hypothesis that makes no predictions is no good
- Collect many cases in which it seems to have happened
- Acid test: watch it happen in a fast-evolving system
- Look for other, competing explanations

"British moths became darker-colored after the Industrial Revolution because of natural selection for better ability to hide on soot-stained tree trunks."

- Think of at least three ways to test this story
- Points to consider:
 - Historical confirmation
 - Experimental confirmation
 - Alternative hypotheses

Images by Olaf Leillinger

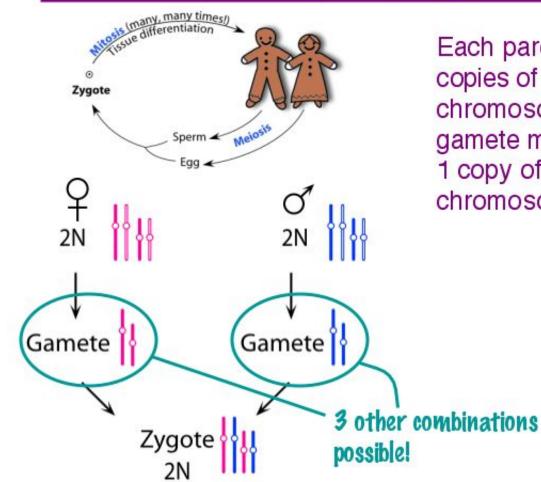

- Cystic fibrosis gene (CFTR)
- Mitochondrial genome (mtDNA)

- Classically regarded as a recessive lethal
- Homozygotes have a severe disease
 - CFTR regulates ion balance across the cell membrane
 - Without it, lung mucus becomes too thick
 - Homozygotes are vulnerable to lung infections
 - Prior to modern treatment, most died before adulthood
- Most frequent genetic disease in Caucasians
- Carrier frequency 1 in 20
- Dozens of mutations known

Questions raised by this gene:

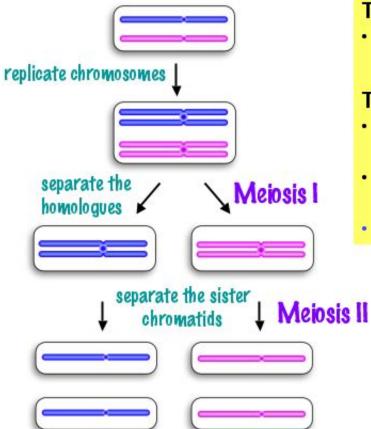
- Why is a deadly disease so common?
 - Genetic drift/founder effect?
 - Heterozygote advantage?
 - Hitchhiking? (Is it linked to something good?)
- How will modern medicine change the allele frequency? (Are we all going to have CF eventually?)

- 60 kb circular genome
- Genes:
 - Protein-coding genes involved in mitochondrial function
 - tRNA genes
 - "Control" or "D-loop" region apparently contains no genes
- Found in almost all eukaryotes; essential in most
- Believed to be a captured bacterial cell
- In vertebrates, believed to be inherited only maternally



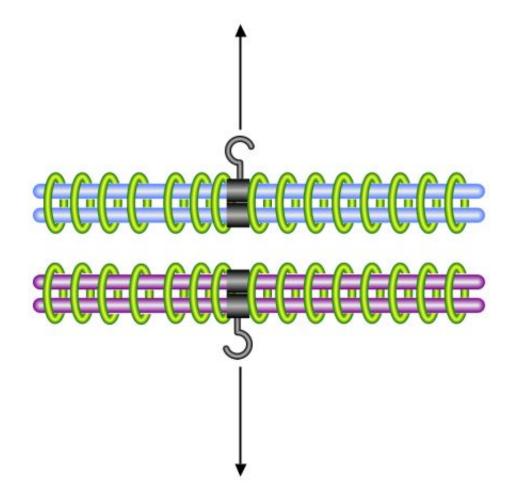
- Questions raised by this genome:
 - Why do we think it's an enslaved bacterium? How could that have happened?
 - What does it reveal about past population history? Can we discover past human history by tracing mtDNA lineages?
 - Is it really only inherited from the mother? Why?
 - Does the lack of recombination endanger it?
 - Is there genetic conflict between the nuclear and mitochondrial genomes? (How does the nucleus prevent a slave revolt?)
 - When were mitochondria enslaved? Did *Giardia* lose mitochondria or never have them?

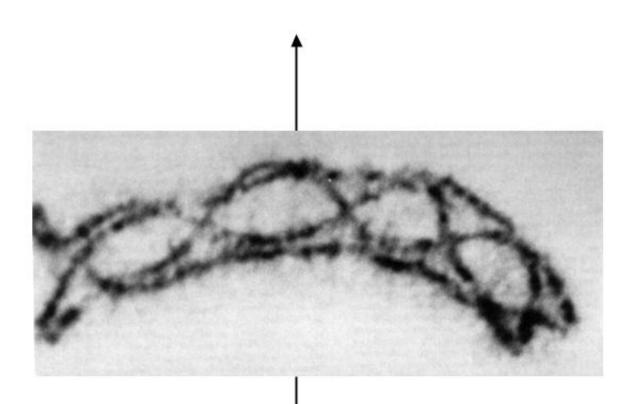
Several aspects will be important:

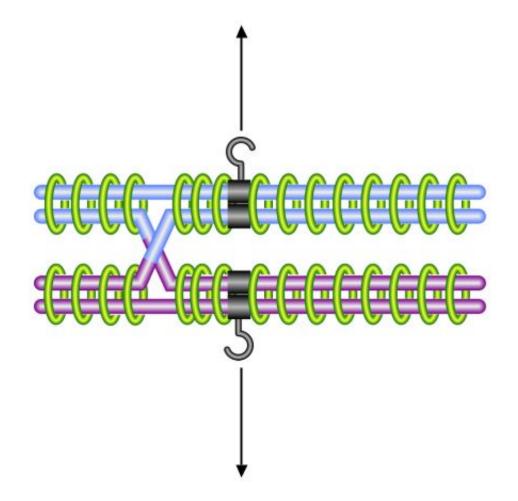

- Mendelian segregation
 - Basis for most genetic predictions
 - Subverted by genes with meiotic drive ("selfish genes")
- Recombination
 - Allows genes to have independent fates
 - Fundamental to "mystery of sex"
- Chromosomal rearrangement
 - Changes in chromosome structure can disrupt meiosis
 - Critical in some forms of speciation
- Please make sure you're comfortable with meiosis

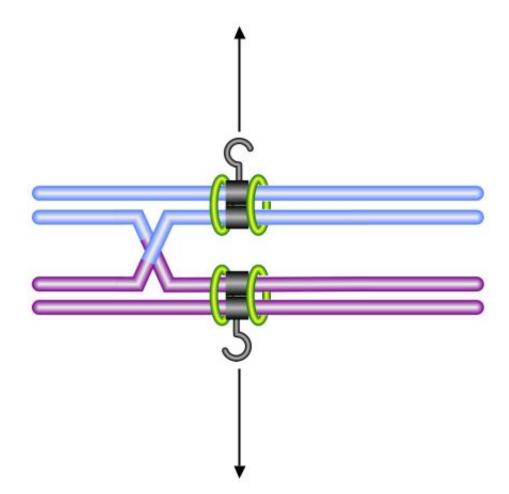
Each parent has 2 copies of every chromosome... but each gamete must have only 1 copy of each chromosome

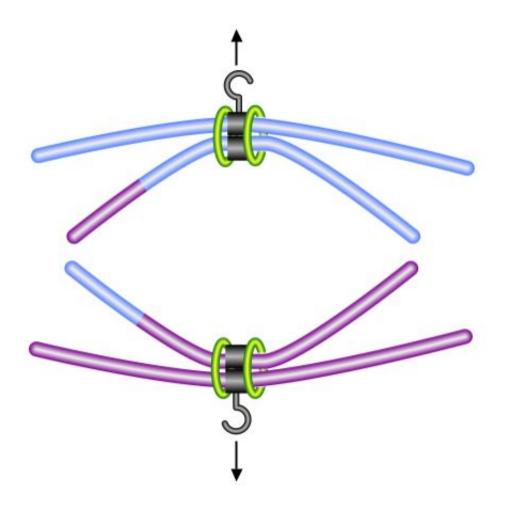
Overview of meiosis



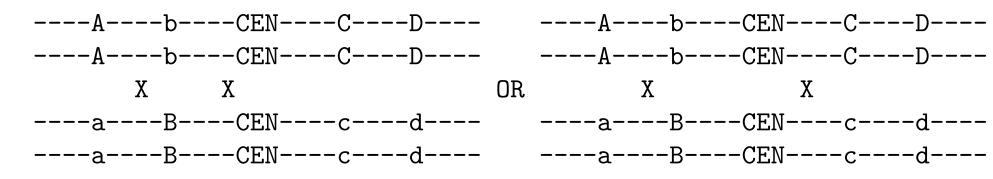

The problem:


 ensuring that homologues are partitioned to separate gametes


The solution:


- Hold homologous chromosomes together by some means
- target homologues to opposite poles...
- then separate the homologues

An individual has two copies of chromosome 6, with alleles of various genes as shown:


We sample gametes (eggs or sperm) from this individual and find one with the following chromosome 6:

-----CEN-----C----D------

- What is the minimum number of recombination events to explain this gamete?
- Sketch metaphase of meiosis I showing a set of recombinations that could have produced this gamete.

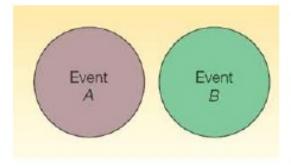
Practice problem

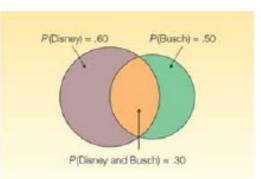
- What is the minimum number of recombination events to explain this gamete? 2
- Sketch metaphase of meiosis I showing a set of recombinations that could have produced this gamete.

If this problem troubles you, please review meiosis.

LO4 Calculate probabilities using rules of addition.

Rules of Addition for Computing Probabilities


Rules of Addition


Special Rule of Addition - If two events A and B are mutually exclusive, the probability of one or the other event's occurring equals the sum of their probabilities.

P(A or B) = P(A) + P(B)

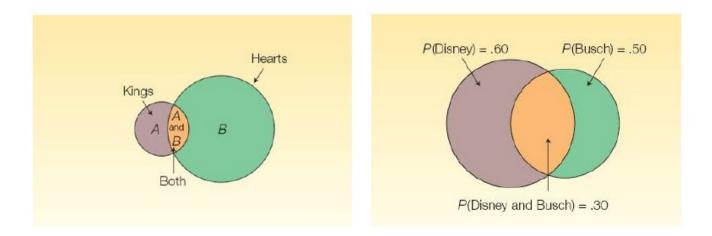
 The General Rule of Addition - If A and B are two events that are not mutually exclusive, then P(A or B) is given by the following formula:

P(A or B) = P(A) + P(B) - P(A and B)

Probability of mutually exclusive events

- If two events are mutually exclusive:
 - A sperm either carries B or b but not both
 - In a race with many runners, Sue might win, or Tom might win, but they can't both win
- The probability that one of the two will happen is the *sum* of the individual probabilities

Probability of mutually exclusive events


- A sperm either carries B or b but not both
 - If the sperm carries B~50% of the time and b~50% of the time, it carries either B or b~100% of the time
- In a race with many runners, Sue might win, or Tom might win, but they can't both win
 - If Sue has a 20% chance to win and Tom has a 15% chance to win, there's a 35% chance that one of them will win

Things to watch out for:

- Doesn't work if events not mutually exclusive
- ...What if Sue and Tom can tie for first?
- If you have listed ALL possible events, total probability should be 1 (100%)
- Probabilities are never greater than 1 or less than 0
- Scientists tend to use percentages (70% chance of winning) and fractions (probability 0.7 of winning) interchangeably-don't get confused!

Joint Probability – Venn Diagram

JOINT PROBABILITY A probability that measures the likelihood two or more events will happen concurrently.

- If two events are independent (unrelated)
- The probability that both will happen is the *product* of the two probabilities

- If two events are independent (unrelated)
 - A sperm carries B and an egg carries b
 - Sue wins the sprint and Tom wins the marathon
- The probability that both will happen is the *product* of the two probabilities

- A sperm carries B and an egg carries b
 - Sperm has B 50% and egg has b 10%; joint probability is 5%
- Sue wins the sprint and Tom wins the marathon
 - Sue wins 90% and Tom wins 75%; joint probability is 67.5%

- Doesn't work if the events are not really independent
- ...What if Sue and Tom are part of a team and the whole team is disqualified?
- Be sure to consider all ways you could get your outcome
- Probabilities are STILL never greater than 1 or less than 0

- At a chess tournament:
 - Mary plays Chouchanik; Mary has a 30% chance to win
 - Naomi plays Bada; Naomi has a 60% chance to win
 - Each game also has a 10% chance to be a draw (tie)
 - If Mary and Naomi both win, Mary ties for first
 - If Mary wins and Naomi and Bada draw, Mary ties for first
- What is the probability that Mary ties for first?

Practice problem on probabilities

- Assuming the two games are independent:
 - Mary wins 0.3 * Naomi wins 0.6 = 0.18
 - Mary wins 0.3 * Naomi draws 0.1 = 0.03
 - Total chance that Mary ties for first: 0.18+0.03=21%
- (Unfortunately for me Naomi lost)

- Mary wins 30%, Naomi wins 60% (in separate games)
- Mary's chance of tying for first can't be greater than 30% (her chance of winning her game)
- Are the games really independent? Could the outcome of one game influence the other?

- Tear off a half-sheet of paper
- Write one line about the lecture:
 - Was anything unclear?
 - Did anything work particularly well?
 - What could be better?
- Leave at the back on your way out