Today's lecture

- Reproductive isolation
- Hybrids
- Modes of speciation
- Other topics in speciation

1

- Q: Are plants living on a toxic mine likely in the process of forming new species?
- A: I use this exact example in this lecture!

Pre-mating reproductive isolation

- Reproduction fails before fertilization happens:
 - Different breeding season
 - Different mating grounds
 - Different mating behavior
 - Males and females not attractive to each other
 - Incompatible genitals
- Presence of the other species does not reduce fitness

Post-mating reproductive isolation

- Reproduction fails around or after fertilization:
 - Mating is sterile
 - Hybrid offspring are inviable or sickly
 - Hybrid offspring are sterile
- Presence of the other species can reduce fitness

- If there is no pre-mating isolation, contact between species reduces the fitness of individuals in the contact zone
- Therefore, whever there is:
 - Post-mating isolation
 - Contact between the species
- ...then there is selection for pre-mating isolation
- Species pairs that have only post-mating isolation probably never interact

Ligers

Image from Wikipedia, photographer hkandy

- Hybrids of a male lion and a female tiger
- Lion and tiger ranges do not overlap today but did in the past; legends suggest wild-born ligers may have existed then
- Sometimes happen by accident in zoos/circuses
- Male ligers do not produce viable sperm, but females can be fertile
- What can we say about reproductive isolation of lions and tigers?

- "In hybrids, when one sex is absent, defective, or sterile, it is the heterogametic sex" (two unlike sex chromosomes)
 - Male mammals, flies (XY)
 - (60 documented cases of fertile female mules; none of fertile males)
 - Female birds, butterflies, campion flowers (ZW)
- Few exceptions, mostly in *Drosophila*

Various theories:

- Hypotheses that explain both XY and ZW
 - Hemizygosity of sex chromosome is a vulnerability
 - Haploid parts of the genome diverge faster so become incompatible sooner
- Hypotheses for heterogametic males only:
 - Males evolve faster (sexual selection, smaller effective population size)
 - Meiotic drive in sperm easier than in eggs
- More than one of these may be true

Ligers and tigons

- Liger (male lion x female tiger):
 - Huge animals
 - Male sterile, female sometimes fertile
- Tigon (male tiger x female lion):
 - Lion-sized animals
 - Male sterile, female sometimes fertile
- Differences likely due to epigenetic imprinting (male and female leave different "marks" on the genomes they transmit)
- Does follow Haldane's Rule

- Old view:
 - Species should be protected
 - Hybrids need not be protected, and perhaps should be eliminated
- New view:
 - Populations with unique genetic traits are valuable even if hybrid
 - Many ecologically important species originated as hybrids
 - Hybridization bad if it displaces original species (Northwest Crows?)

Discussion

- Red wolves are currently a protected species
 - If they turn out to be an ancient gray wolf/coyote hybrid, would that matter?
 - If they turn out to be a recent hybrid, would that matter?
 - Should we try to prevent wolf/coyote hybridization? (Usually done by sterilizing coyotes in overlap areas)

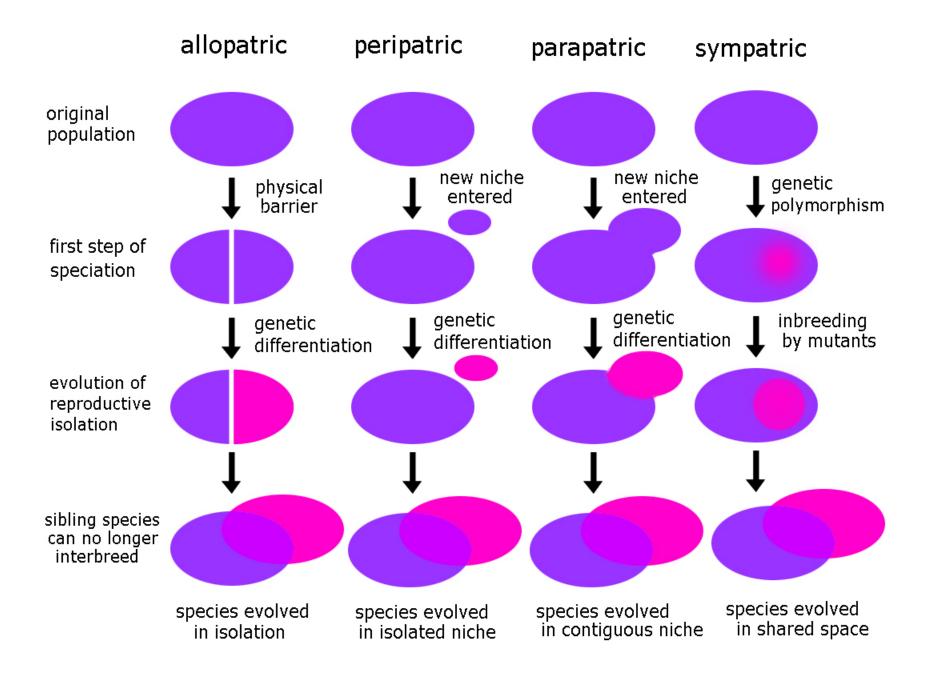
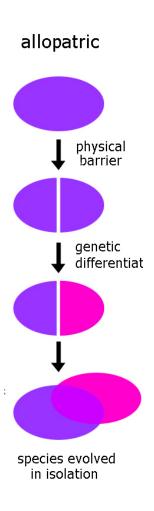


Image by LaggedOnUser


Speciation

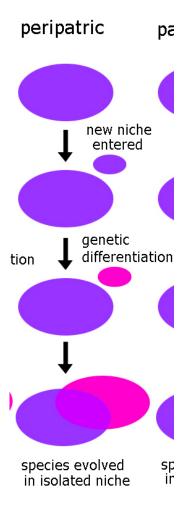
- (Gradual) speciation is a process:
 - One well-mixed population
 - Two populations with slight differences
 - Two well-defined populations with clear differences
- Differences could be genomic, morphological, or behavioral
- A given length of separation does not produce a predictable amount of change in genome, morphology, or behavior!

Allopatric speciation

- "Separate homelands"
- A population is divided by a physical barrier, and the two parts evolve separately
- No selection for reproductive isolation
- Isolation can develop as a side effect of drift and adaptation
- If the species later come into contact, selection favors pre-mating isolation

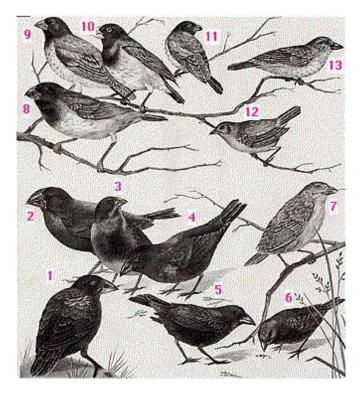
Forces that can lead to reproductive isolation in allopatric species:

- Adaptations to different environments
- Changes in major developmental pathways
- Changes in gene order
- Changes in chromosome number or structure
- Genetic drift in key traits such as mating behavior, egg/sperm recognition


- Separation of continents (camel versus llama)
- Ice Age separation of populations (salamanders)
- Isolation of a lake from river system (kokanee)

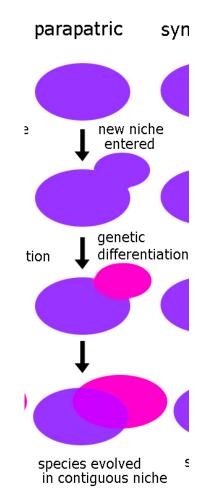
Allopatric speciation sometimes fails to happen

- Mangosteen populations in Africa and South America:
 - interfertile
 - appear similar
 - considered the same species
- How did they cross the Atlantic? Or have they been isolated since Africa split from South America (Cretaceous)?
- In Madagascar (40 km from Africa) are 19 distinct indigenous species of mangosteens
- Without a force actively promoting reproductive isolation, it does not always arise


Peripatric speciation

- A variant of allopatric speciation
- A *small* group is isolated from the main population
- Genetic drift causes rapid genetic divergence
- Newborn peripatric species have low genetic diversity (bottleneck)
- After a long time, may be hard to tell

Peripatric speciation-examples


- Colonization of an island (Hawaiian Drosophila, Darwin's finches, Malagasy mangosteens)
- Habitat fragmentation (grasshoppers)
- Colonization of a new host (SIV virus becomes HIV)

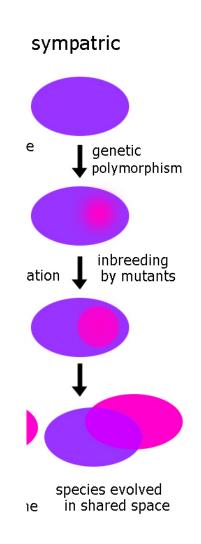
1-7 are ground finches,8-13 are tree finches.

Parapatric speciation

- "Adjacent homelands"
- Two populations are partially separated, but there is still significant gene flow
- Migration will prevent populations from evolving independently if 4Nm >> 1 unless opposed by strong selection
- How can populations becomes species in the face of strong gene flow?

- The grass *Anthoxanthum odoratum* can live on metal-contaminated soil
- Initially gene flow was probably high, but hybrids are unfit
- Modern populations on toxic soil have a different flowering season
- Other plants in the same situation become asexual instead

- I studied 5 groups of ducks in South America
- Mountain populations have unusual hemoglobins which help them fly at high altitude
- In 4 of the groups, mountain and lowland are considered the same species, and genetics suggests considerable gene flow
- In 1 case, mountain and lowland are considered separate species, though there is apparently still a little gene flow
- Gene flow lowers fitness, so reproductive isolation may eventually arise


Puna Teal (Anas puna), photo courtesy of Dick Daniels

Silver Teal (*Anas versicolor*), photo courtesy of Claudio Dias Timm

Sympatric speciation

- "Same homeland"
- Speciation with no physical separation at all
- How could this happen? Possibilities:
 - Polyploidization
 - Wolbachia
 - Self-fertilization or cloning innovations
 - Intense inbreeding
 - Non-physical barriers

- Maggot flies in North America lived on native hawthorn
- Settlers introduced apple about 200 years ago
- Populations are differentiating because:
 - Female flies tend to lay eggs on plants of their natal type
 - Male flies tend to look for mates on plants of their natal type
- This situation could lead to sympatric speciation

- Some Pacific salmon take exactly two years to breed
- Population A spawns 2014, 2016, 2018...
- Population B spawns 2013, 2015, 2017...
- Could these speciate?
 - Pro: gene pools appear separate
 - Con: no environmental differences to adapt to
 - Con: even one renegade breeder per year could keep gene pools connected

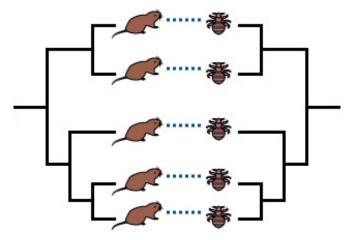
Periodic cicadas

- The periodic cicada has reproductive isolation by time
- Some species have 17-year cycles, others 13
- 13-year cicadas may originate from "mistakes" made by 17-year cicadas
- 13-year populations are more closely related to nearby 17-year populations than to each other

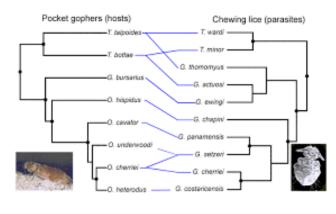
Speciation discussion problems

- Each Greek island has its own species of water frogs
- Physically and behaviorally similiar, but not interfertile
- During the Ice Age, lower sea levels allowed frogs to move among islands
- Today salt water is a near-complete barrier to frog movement

- What is plausible mode of speciation?
- What additional evidence would we like to have?



- Fossils considered potentially a hominid species *Homo floresiensis* found in Indonesia
 - Human-like creatures around 3'6" tall and 55 lbs
 - Otherwise somewhat similiar to Homo erectus
 - Small stone tools present in strata
 - Brain of type specimen smaller than that of a chimpanzee
 - Last dates around 13,000 years ago
- Species or anomaly? How could we find out?


- Hypothesis 1: dwarf island species
 - Other Indonesian island taxa also smaller than average (mammoths, etc)
- Hypothesis 2: pathology such as Laron syndrome
- Unfortunately no DNA has been recovered from fossils (tropical climates are not good for DNA survival)
- Interesting recent approach: look for divergent ancient sequences in modern inhabitants of the area

Cospeciation

- Host species and parasite species often speciate together
- Species trees of the two groups will look very similar
- Example: gophers and gopher lice
- Reproductive isolation of hosts may isolate parasites
- Adaptation of hosts may spur adaptation of parasites (or vice versa)

Idealized schematic

Real data

Gradual versus punctuated

- Classical model: species slowly accumulate differences
- Punctuated equilibrium model (Stephen Gould and colleagues)
 - Burst of change at speciation
 - Relative stasis elsewhere
- Favored by paleontologists, who find bursts of change in the fossil record

(a) Gradualism model. Species (b) Punctuated equilibrium descended from a common ancestor gradually diverge more and more in their morphology as they acquire unique adaptations.

model. A new species changes most as it buds from a parent species and then changes little for the rest of its existence.

Some thoughts on punctuated evolution

- Paleontological species definition encourages this view because "gradual" species can't be recognized as such
- Not all species evolve the same way
- Major changes in body or lifestyle probably require a burst of changes

Domesticated foxes

- Long-term breeding project started by Belyaev in Siberia, 1959
- Fox kits selected for sociability with humans
- Results not only sociable but oddly dog-like

Wild silver fox: image by Zefram

Russian domesticated foxes

- Complex differences from wild foxes:
 - Very tame even when raised in cages
 - Domestic-like color patterns
 - Wagging tails, whining, barking
 - Can follow pointing finger or gaze
 - A few try to reproduce more than once/year
 - Differences in hormone levels, developmental timing
 - Differences in skull and body plan
- Major change in developmental pathway?

- Some organisms appear to change very little over time:
 - ginkgo
 - coelacanth
 - horseshoe crab
- Other organisms change much more rapidly and diversify into multiple species
- Ideas:
 - Change-resistant developmental "program"
 - Broad ecological niche
 - No improvements in easy reach
 - Cryptic species?

- Tear off a half-sheet of paper
- Write one line about the lecture:
 - Was anything unclear?
 - Did anything work particularly well?
 - What could be better?
- Leave at the back on your way out