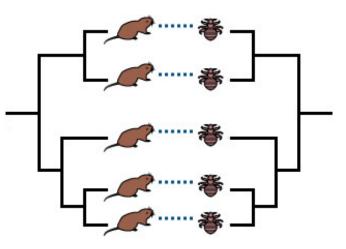
Outline

- Finishing up speciation
- Phylogenies-trees of species
 - What are phylogenies good for?
 - How to look at a phylogeny
 - Rooted versus unrooted trees
 - Clocklike versus non-clocklike trees
 - Appropriate data for phylogenies

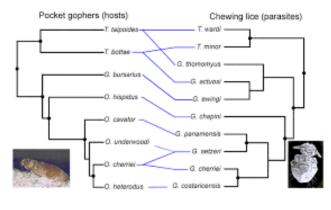
Homo floresiensis

- One skull and 9 partial skeletons
- Around 3'6" tall and 55 lbs
- Brain of type specimen smaller than that of a chimpanzee
- Last dates initially thought to be 13,000 years ago, but now closer to 50,000

Pro species

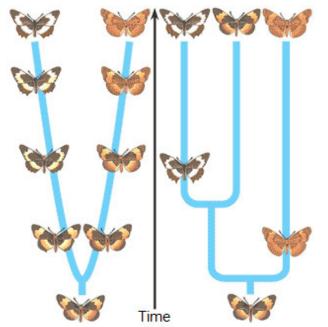

- Other Indonesian island taxa also smaller than average (mammoths, etc)
- *H. floresiensis* also has unusual limb and joint traits
- 700,000 y.o. fossil recently found could be an ancestor/intermediate with *H. erectus*; it's even smaller!

• Laran syndrome:


- Autosomal recessive dwarfing syndrome
- H. floresiensis smaller body and brain than typical for this, but genetic background could matter
- (Side note: some modern humans with Laron syndrome have normal IQ)
- Cretinism (lack of functioning thyroid due to environmental factors)
- Question: are these hypotheses mutually exclusive with species status?

Cospeciation

- Host species and parasite species often speciate together
- Species trees of the two groups will look very similar
- Reproductive isolation of hosts may isolate parasites
- Adaptation of hosts may spur adaptation of parasites (or vice versa)


Idealized schematic

Real data

Gradual versus punctuated

- Classical model: species slowly accumulate differences
- Punctuated equilibrium model (Stephen Gould and colleagues)
 - Burst of change at speciation
 - Relative stasis elsewhere
- Favored by paleontologists, who find bursts of change in the fossil record

(a) Gradualism model. Species (b) Punctuated equilibrium descended from a common ancestor gradually diverge more and more in their morphology as they acquire unique adaptations.

model. A new species changes most as it buds from a parent species and then changes little for the rest of its existence.

Some thoughts on punctuated evolution

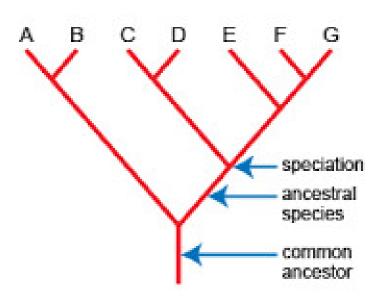
- Paleontological species definition encourages this view because "gradual" species can't be recognized as such
- Not all species evolve the same way
- Major changes in body or lifestyle probably require a burst of changes

Domesticated foxes

- Long-term breeding project started by Belyaev in Siberia, 1959
- Fox kits selected for sociability with humans
- Results not only sociable but oddly dog-like

Wild silver fox: image by Zefram

Russian domesticated foxes

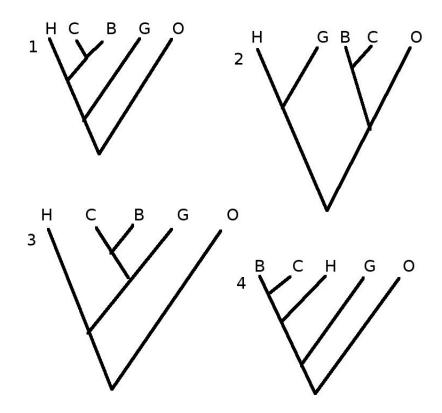

Domesticated foxes

- Complex differences from wild foxes:
 - Very tame even when raised in cages
 - Domestic-like color patterns
 - Wagging tails, whining, barking
 - Can follow pointing finger or gaze
 - A few try to reproduce more than once/year
 - Differences in hormone levels, developmental timing
 - Differences in skull and body plan
- Major change in developmental pathway?

- Some organisms appear to change very little over time:
 - ginkgo
 - coelacanth
 - horseshoe crab
- Other organisms change much more rapidly and diversify into multiple species
- Why? Ideas:
 - Change-resistant developmental "program"
 - Broad ecological niche
 - No improvements in easy reach
 - Cryptic species?

Phylogeny: a branching tree showing inferred relationships among species, populations, or individuals

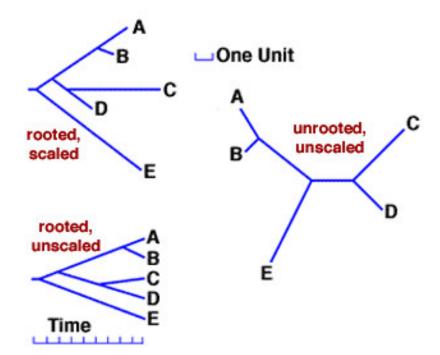
Synonyms: evolutionary tree, cladogram


- "Tree" same as phylogeny
- Taxon, taxa the units at the tips of the tree (species, populations, individuals)
- Clade all taxa descending from a common ancestor
- Root the common ancestor of the whole phylogeny

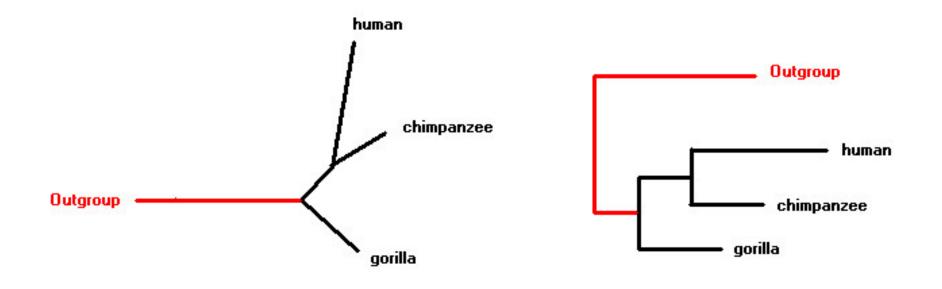
What are phylogenies good for?

- Relationships between organisms
- Dates of evolutionary events
- Evolutionary patterns-did some features evolve multiple times?
- Removing influence of phylogeny from ecological analyses ("comparative method")
- Relationships among genes
- Patterns of speciation and diversification

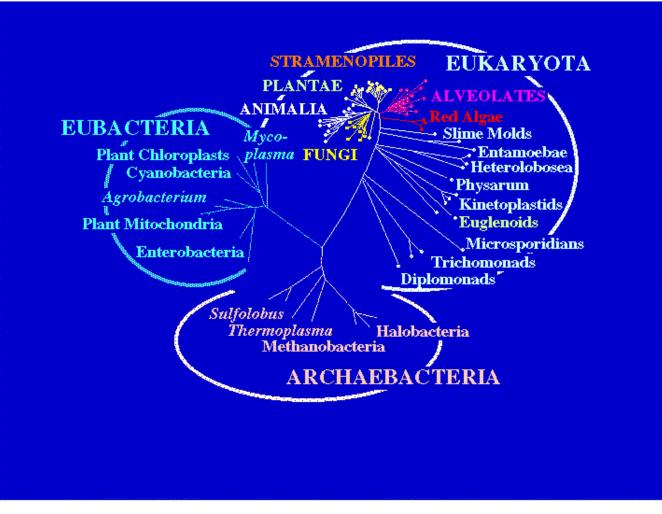
- Branching pattern shows pattern of relationships
- Right-left ordering is NOT significant; can be rearranged to emphasize or obscure points!
- Branch lengths may or may not be meaningful
- Biologists draw root at the bottom; math and CS types draw root at the top


Practice problem

Two of these trees are the same (except for branch lengths). Which two?


Rooted versus unrooted trees

- A rooted tree (phylogeny) has a specific direction of evolution
- The root is the ancestral form from which the others evolved
- This is the most informative type of tree
- Unfortunately, most phylogeny inference methods produce unrooted trees



- An unrooted tree corresponds to a collection of different rooted trees
- We don't know the direction of evolution
- Biological interpretation can be difficult without root
- Ways to root a tree:
 - Outgroup
 - Molecular clock

Outgroup rooting

- Outgroup species known not to belong to clade
 - Wrong outgroup leads to wrong root
 - Too-distant outgroup leads to noise in data
- Some comparisons have no suitable outgroup

- Can we assume rate of evolution the same on all branches?
- If so:
 - Root is point most distant from all tips
 - Branch length is proportional to time
 - If we can date a few points on tree, can date entire tree
- Clock may not hold:
 - Unequal generation time
 - Different selection constraints
 - Different mutation rates
- Clock assumption safest among closely related species

Appropriate data for phylogenies

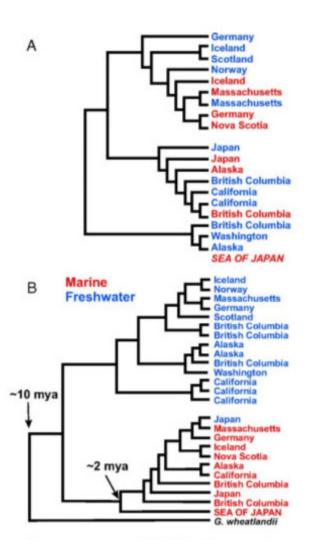
- Good phylogenetic data has:
 - Enough variation to show relationships
 - Not so much variation that it randomizes signal
 - Ability to establish homology
 - Relative freedom from convergent evolution
 - Mode of evolution relatively well understood
 - If possible, a good clock
- No one type of data works for all problems

Some important dates in history

Origin of the universe	–12 ^a ±2
Formation of the solar system	-4.6 ±0.4
First self-replicating system	-3.5 ±0.5
Prokaryotic-eukaryotic divergence	–2.5 ±0.3
Plant-animal divergence	-1.0
Invertebrate-vertebrate divergence	-0.5
Mammalian radiation beginning	-0.1

^aBillions of years ago

s ^a /100 res. /10 ⁸ years	Protein	Lookback time ^b
400	45°	Primates,Rodents
		Mammalian Radiation
=;	••••	Vertebrates Animals
		Plants/Animals
8	2.3	Prokayrotic/Eukarotic
se 3	6	Archaen
se 1	18	?
	/10 ⁸ years 400 90 27 21 12 8 se 3	/10 ⁸ years Protein 400 45° 90 200 27 670 21 850 12 1.5 ^d 8 2.3 se 3 6


^aPAMs, point accepted mutations. ^bUseful lookback time, 360 PAMs, 15% identity. ^cMillions of years. ^dBillions of years.

Appropriate data for phylogenies

- Within species, between closely related species
 - Non-coding DNA and pseudogenes
 - Microsatellites
 - Very fast-evolving genes
 - mtDNA
- Between moderately similar species
 - Most protein-coding genes, especially housekeeping genes
- Between extremely dissimilar species
 - Ribosomal RNA
 - Very slow-evolving genes

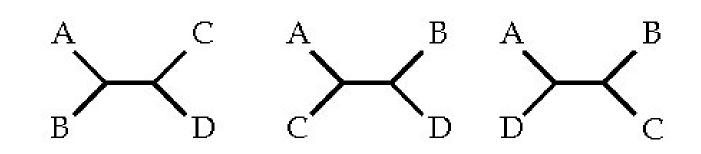
Convergent evolution?

- Why not use loci involved in "exciting" traits of the species?
- Convergent evolution:
 - Two clades are under the same external pressure
 - They independently evolve the same response
 - Not a reliable indicator of relationships
- Upper figure is many random genes; lower is a gene involved in fresh/saltwater adaptation

Why phylogenies are hard

- Tips Topologies
 - 3 3
 - 4 18
 - 5 180
 - 6 2700
 - 7 56700
 - 8 1587600
 - 9 57153600
 - 10 2571912000
 - 15 6958057668962400000
 - 20 56448098958873059133696000000
 - 30 4368466613103069512464680198620763891440640000000000000
 - 40 302733382994800735654630336455145720004293943205386250170788872192000000000
 - 50 3.28632 \times 10¹¹²
- 100 1.37416 \times 10²⁸⁴

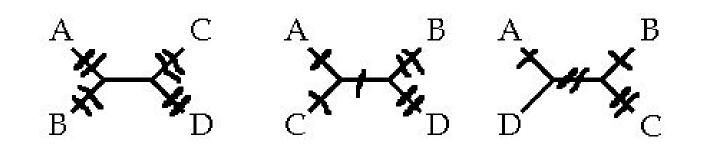
- In many cases tree search known to be "NP complete"
- No efficient algorithm is known-none may exist but this is unproven
- Solving any NP-complete problem solves ALL OF THEM
- Three consequences of such an algorithm
 - Reliably find the right phylogeny
 - Crack most/all current codes (business and military)
 - Difficult conversation with the NSA....
- Must use heuristic approximations which will sometimes fail (get the wrong tree)


- Three major approaches to phylogeny inference
 - Parsimony (today)
 - Distance (Friday)
 - Maximum likelihood and Bayesian methods (Friday)

- (Philosophical) Principle of Parsimony: Make as few assumptions as possible
- (Phylogenetic) Principle of Parsimony: Prefer the tree that assumes the smallest number of evolutionary changes
- Assumes that changes are fairly rare and evenly distributed

Parsimony methods

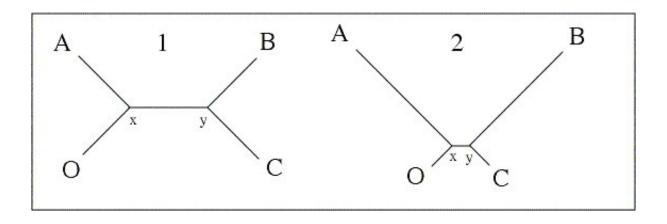
- Advantages of parsimony:
 - No explicit mutational model required
 - Applicable to the widest variety of data-including morphological traits (all we have for fossils)
 - Moderately fast
- Disadvantages:
 - No explicit mutational model possible
 - Long branch attraction
 - Limited ability to put error bars on phylogeny estimate


Practice problem-parsimony

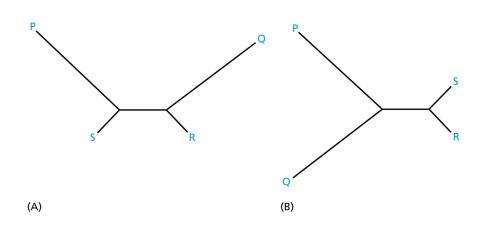
Taxon	1	2	3	4	5
А	A	А	С	G	А
В	Т	А	А	Т	Т
С	Т	А	А	G	А
Taxon A B C D	A	С	С	G	Т

How many changes are needed on each tree topology? Which topology is preferred by parsimony?

Practice problem-parsimony

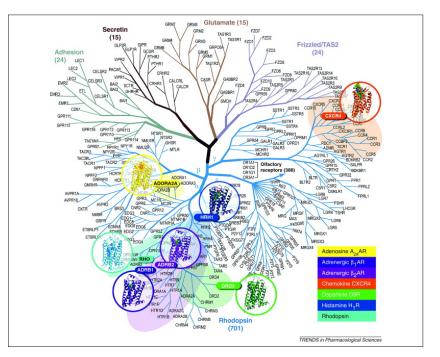


Taxon	1	2	3	4	5
А	А	А	С	G	А
В	Т	А	А	Т	Т
С	Т	А	А	G	А
Taxon A B C D	A	С	С	G	Т


How many changes are needed on each tree topology? *8*, *7*, *6* Which topology is preferred by parsimony? *Third topology*

Parsimony methods

- Felsenstein showed a four-tip tree which gives inconsistent results with parsimony
- "Inconsistent" wrong answer becomes more probable as data increases
- With infinite data you would be 100% sure to get the wrong answer


Long branch attraction

- Data from tree A leads to inference of (wrong) tree B
- Two convergent changes on the long branches are more likely than a single change on the short branches
- This violates the basic principle of parsimony
- Fast-evolving sites and data sets are particularly problematic

Betting on your trees

- Ken Rice makes parsimony trees of G-protein coupled receptors
 - Maximum likelihood too slow
 - Distance methods didn't perform well
- If new gene groups with:
 - Odor receptors ignore
 - Neurotransmitter receptors
 - spend \$2K to validate

G-protein coupled receptor genes

- Tear off a half-sheet of paper
- Write one line about the lecture:
 - Was anything unclear?
 - Did anything work particularly well?
 - What could be better?
- Leave at the back on your way out