Topics

- Homework
- A bit more about phylogenies
- Coalescent theory
 - What is it good for?
 - How does it work?

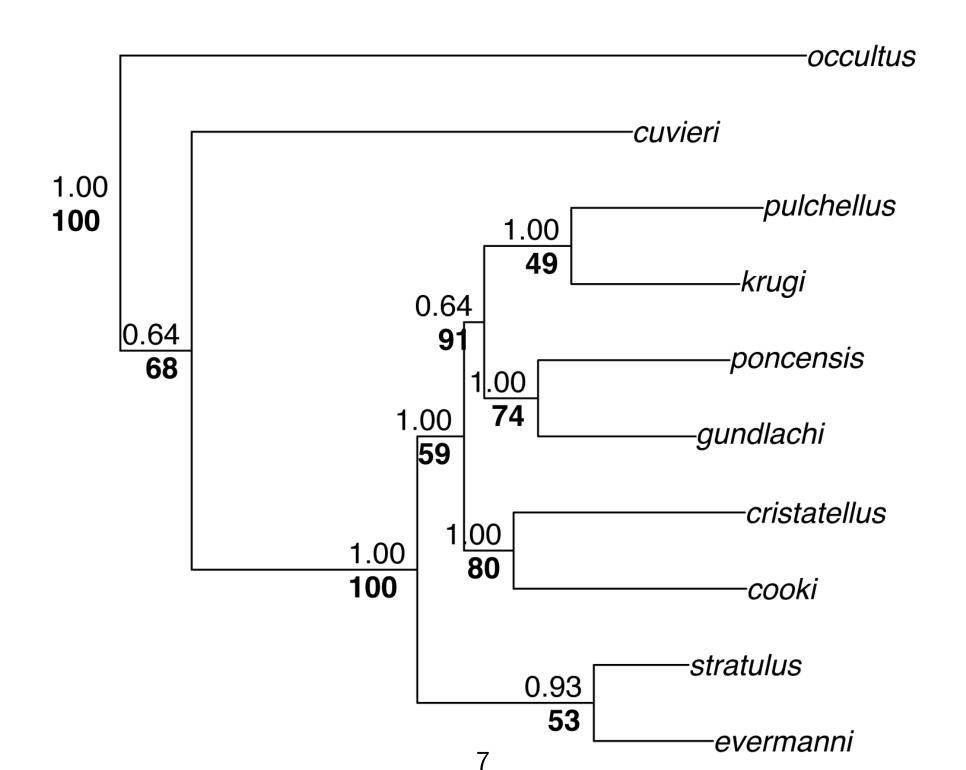
A homework comment

- The Inland birds differ from all others by genome rearrangements
- How could that happen?
 - Genome rearrangements usually underdominant
 - Natural selection tends to weed them out
- Could be strong selection for the inversions?

A homework comment

- Easist explanation is tiny population size:
 - Genetic drift is strong
 - Mating among close relatives could produce homozygotes quickly
- Thus, speciation was probably peripatric (though could have been allopatric with a later bottleneck)

Student question


- Q: Which phylogeny methods should we be able to do by hand?
- A: Parsimony and UPGMA
 - Exam problems would be similar to HW9 problems
 - Impossible to do likelihood or Bayesian computations by hand....
 - Questions about these methods would be general/conceptual only

Phylogeny validation: likelihood

- Maximum likelihood algorithms come with built-in estimates of confidence
- Unfortunately these are only approximate for finite sized data sets
- Many researchers present bootstraps instead because they are more generally understood

Phylogeny validation: Bayesian methods

- Bayesian "cloud of trees" can be treated like a bootstrap sample
- They answer different questions:
 - Bootstrap: would a slightly different data set prefer a different tree?
 - Bayesian support: would a slightly different tree fit this data set almost as well?
- It is easier to see that these are different than to understand how to use each one appropriately!
- If "cloud" is too small, results will be overly certain

Garbage in, garbage out

- No sensible tree exists when:
 - A species arose by hybridization of two other species
 - Genes have been exchanged between distantly related species
 - Different genes in the genome have different histories due to recombination and reassortment
- The programs will still run and a tree will be produced!
- Hybrids often move toward the bottom of the tree, or may cluster with one or the other parent
- Ideally we'd infer a tangled graph, but this problem is HARD

Coalescence

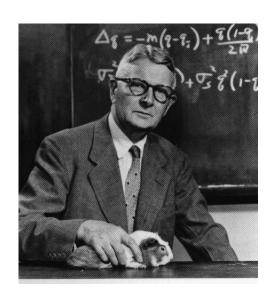
- Definition
- Gray whale example
- Within-population trees
- Coalescence time depends on population size
- Coalescent-based algorithms:
 - Summary statistic approaches
 - Many-tree approaches

Coalescent Theory

- Timing and pattern of common ancestry within a population reflects past population size
- It can also be perturbed by:
 - Population growth/shrinkage
 - Gene flow (migration)
 - Recombination
 - Natural selection
- If we can detect these patterns we can infer past population history

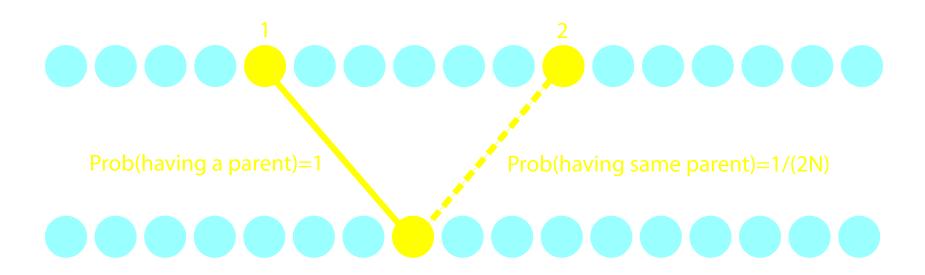
Alter et al. (2007) DNA evidence for historic population size and past ecosystem impacts of gray whales. PNAS 104: 15162-15167.

- How many gray whales pre-whaling?
- Whaling ship records not conclusive
- Recent slowing of the observed growth rate may suggest recovery
- Molecular data an alternative source of information



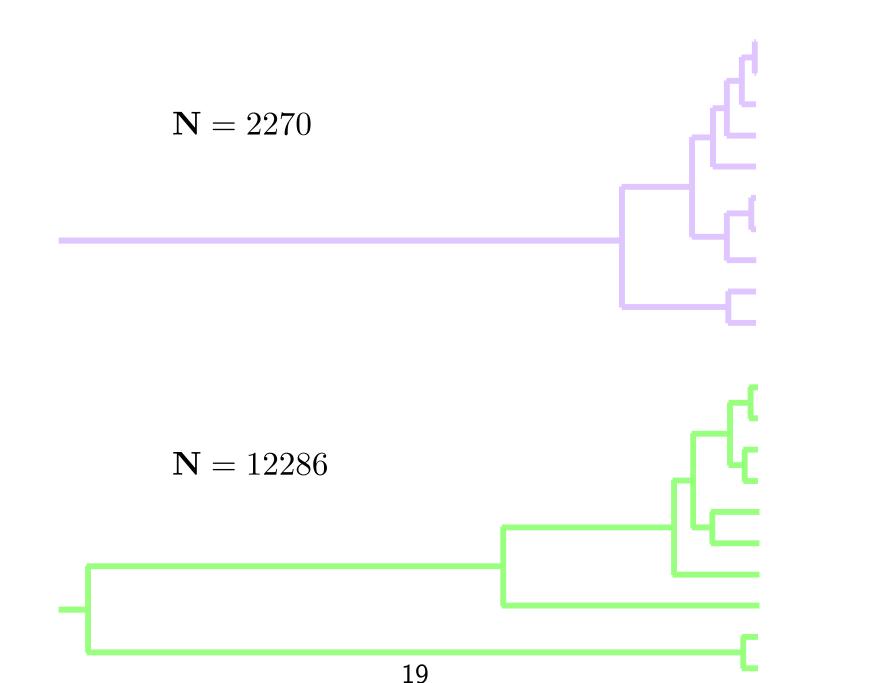
- 10 loci:
 - 7 autosomal
 - 2 X-linked
 - 1 mtDNA
- Complex mutational model with rate variation among loci
- Complex population model with subdivision and copy number
- ullet Complex demographic model relating N_{census} to N_e

	Locus	n	Estimated N
Aut	ACTA	72	162,625
	BTN	72	76,369
	CP	76	77,319
	ESO	72	272,320
	FGG	72	180,730
	LACTAL	72	44,410
	WT1	80	51,972
X	G6PD	30	2,769
	PLP	52	92,655
mtDNA	Cytb	42	107,778
	All data		96,400 (78,500-117,700)
	Current census		18,000-29,000
	Previous models		19,480-35,430


- Important conservation implications
- Effect on ecosystem significant:
 - Resuspension of up to 700 million cubic meters sediment
 - (12 Yukon Rivers worth)
 - Food for 1 million sea birds
- If accepted, result suggests halving gray whale kill rate
- Broadly similar results for minke, humpback, and fin whales

Wright-Fisher population model

Sewall Wright showed that the probability that 2 gene copies come from the same gene copy in the preceding generation is


Prob (two genes share a parent) =
$$\frac{1}{2N}$$

Coalescence time depends on population size

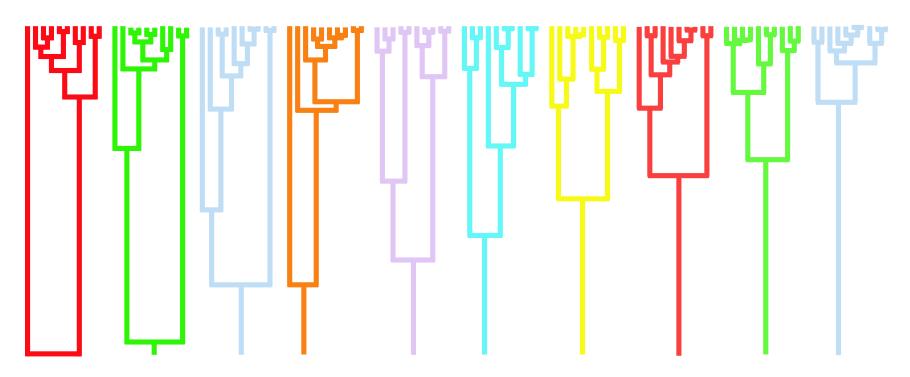
- ullet Time back until a coalescence depends on population size N
- ullet For k lines, the expected time (backwards) until a coalescence is k(k-1)/2N
- The time back to the second, third, etc. has the same type of distribution
- We can estimate N by collecting information about coalescence times
- The bigger N is, the longer the coalescence times

Coalescence time depends on population size

This would be great if....

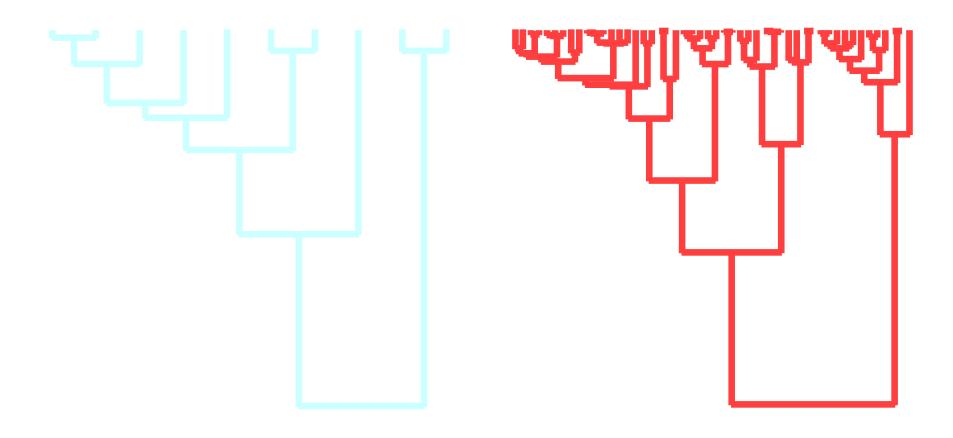
- If we knew the tree, including its times, we would have a powerful estimator of population size
- Unfortunately this is difficult to infer
- Within-population variation too low for accurate phylogeny estimation
- We also have a problem with times:
 - All we observe (except with viruses or fossil DNA) is mutational differences
 - Need to know mutation rate μ to get times

The variable Θ (Theta)


- ullet We estimate the compound parameter $4N_e\mu$ also called Θ
- ullet One factor of 2 comes from each individual having two gene copies (so the number of gene copies is 2N)
- The other comes from mutations accumulating on both branches of the tree, so in 1 unit of time we accumulate 2 units of mutations

The variable Θ (Theta)

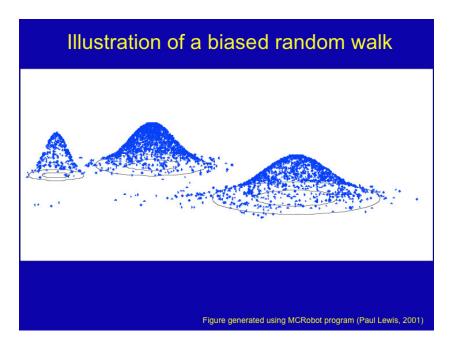
- ullet Disappointing not to get N_e directly
- ullet If we can measure μ experimentally we can convert Θ to N_e
- \bullet Even if we can't, Θ is interesting:
 - Comparing populations with similar mutation rate
 - Expected "carrying capacity" of genetic diversity
- Examples:
 - Estimated Θ higher in Africans than other humans (expected)
 - Estimated Θ higher in chimps than humans (not expected: bottleneck in humans?)


Variability of the coalescent

A single gene can give a misleading answer:

10 coalescent trees generated with N = 10,000

Does sampling more individuals help? (No)



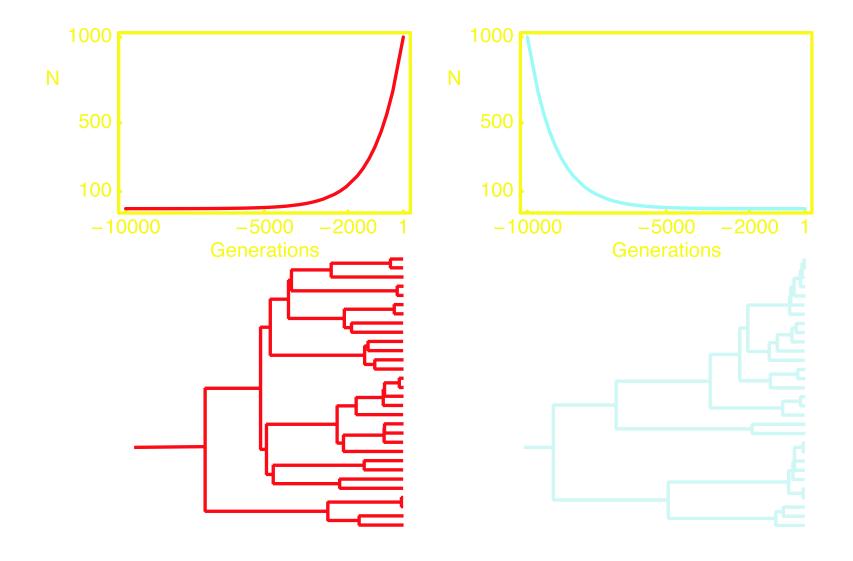
Summary-statistic approaches

- Summary statistics look at the bulk properties of coalescent trees.
- They often require a simplified model of mutation.
- Watterson's estimator of Θ counts variable sites
- We know how many variable sites to expect for various values of Θ , sequence length and number of sequences
- This approach discards much of the information in the data

Many-tree approaches

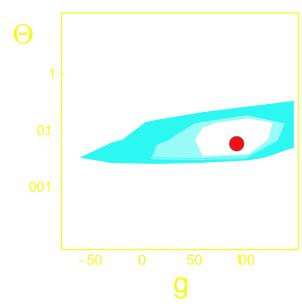
- My lab tries to estimate Θ
 by considering many possible trees
- We write sampling algorithms which visit mainly the most likely trees
- Similar to Bayesian phylogenetic algorithm

Variants and extension of the coalescent


- Population growth/shrinkage over time
- Migration between populations
- Recombination
- Divergence of populations
- Selection (someday!)

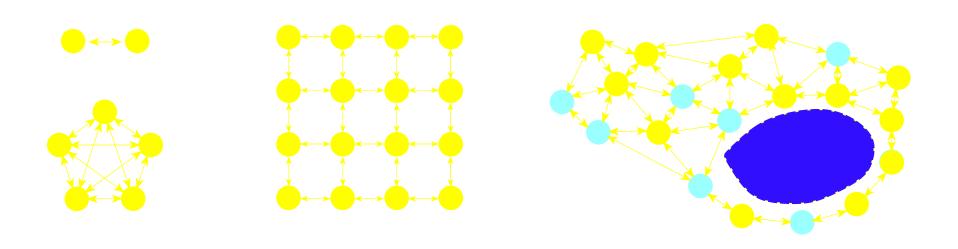
Variable population size

- In a small population lineages coalesce quickly
- In a large population lineages coalesce slowly

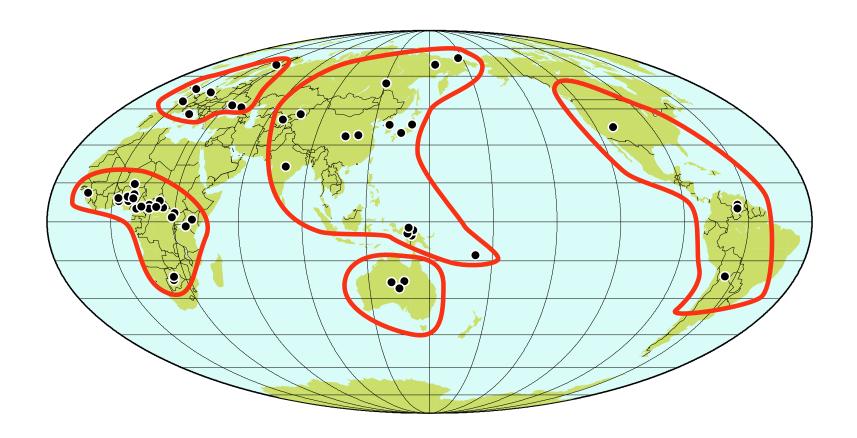

This leaves a signature in the data. We can exploit this and estimate the population growth rate g jointly with the population size Θ .

Exponential population size expansion or shrinkage

Water frog data: easier to estimate Θ than g

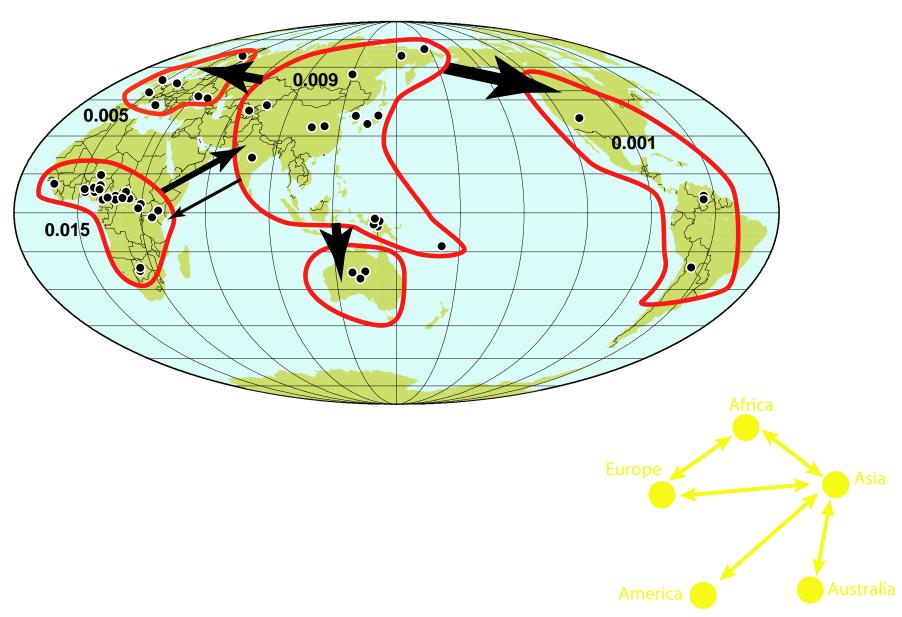


Mutation Rate


Population sizes

	-10000 generations	Present
10^{-8}	8,300,000	8,360,000
10^{-7}	780,000	836,000
10^{-6}	40,500	83,600

Gene flow



Complete mtDNA from 5 human "populations"

A total of 53 complete mtDNA sequences (\sim 16 kb): Africa: 22, Asia: 17, Australia: 3, America: 4, Europe: 7.

Restricted model: only migration into neighbors allowed

Turner, Wares, and Gold (2002)

Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish

Genetics 162:1329-1339

Red Drum, Sciaenops ocellatus

- Census population size: 3,400,000
- Effective population size: ?
- Data set:
 - 8 microsatellite loci
 - 7 populations
 - 20 individuals per population

Three approaches

- 1. Allele frequency fluctuation from year to year
 - Measures current population size
 - May be sensitive to short-term fluctuations
- 2. Coalescent estimate from Migrate
 - Measures long-term harmonic mean of population size
 - May reflect past bottlenecks or other long-term effects
- 3. Demographic models
 - Attempt to infer genetic size from census size
 - Vulnerable to errors in demographic model
 - Not well established for long-lived species with high reproductive variability

Estimates:

Census size (N): 3,400,000

Allele frequency method (N_e) : 3,516 (1,785-18,148)

Coalescent method (N_e) : 1,853 (317-7,226)

The demographic model can be made consistent with these only by assuming enormous variance in reproductive success among individuals.

- Allele frequency estimators measure current size
- Coalescent estimators measure long-term size
- Conclusion: population size and structure have been stable

- Effective population size at least 1000 times smaller than census
- This result was highly surprising
- Red drum has the genetic liabilities of a rare species
- Turner et al. hypothesize an "estuary lottery"
- Unless the eggs are in exactly the right place, they all die

Coalescent theory—summary

- Genetic drift drives pattern of coalescences
- This embeds information about past population size in relationships among current individuals
- Various methods take advantage of this to estimate:
 - Population size, growth, shrinkage
 - Migration patterns
 - Recombination rates
 - Natural selection

Other applications of the coalescent

- Tracking expansion of an epidemic (correlation with hospital records was amazing)
- How many humans in North America pre-Columbus?
- When did the extinct Beringian bison start to decline? Was it our fault? (Required ancient DNA samples)
- Deciding if foreign medics in Libya had brought HIV virus with them (no)

One-minute responses

- Tear off a half-sheet of paper
- Write one line about the lecture:
 - Was anything unclear?
 - Did anything work particularly well?
 - What could be better?
- Leave at the back on your way out