
Roadmap

- Left over from Friday:
 - RNU2 locus
 - P element in large vs. small populations
 - Transposition machinery co-opted by cell
- Phylogenetic trees:
 - Interpreting a tree
 - Inferring trees by parsimony
 - Inferring trees by distance methods

From Liao (1999) AJHG

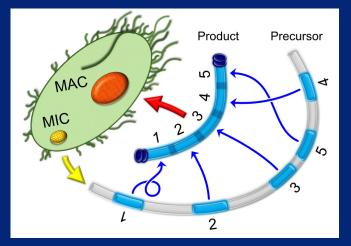
- Cross P into a lab strain and maintain a population in bottles
- Population may live or die
- Which is likely to do better, a large or small population?
- When this experiment has been done, large populations are more likely to survive

McClintock's "genome shock" hypothesis

• Transposons could allow an organism to control its mutation rate:

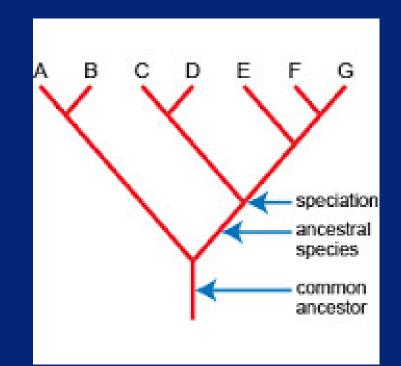
- Suppress transposition when well adapted
- Permit transposition when struggling, "hoping" for a useful mutation
- Alternative hypothesis: transposons are purely selfish
 - Suppress transposition whenever possible
 - Fail to suppress transposition when badly stressed
- Not easy to test these alternatives

Finding a use for transposons


Oxytricha genome rearrangement

• Two nuclei per cell:

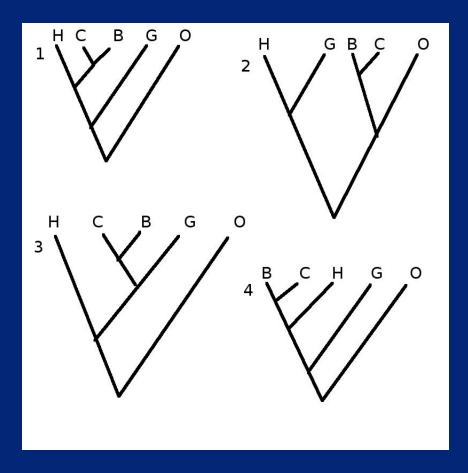
- Micronucleus used for reproduction, but genes not active
- Macronucleus expresses genes
- Macronucleus genome is highly rearranged:
 - Cut into around 16,000 tiny chromosomes
 - Usually 1 gene per chromosome
 - Genes are re-assembled from fragments
 - Some are duplicated (dosage control?)
 - 95% of germline genome is destroyed


Transposons harnessed to chew up genome

- Germline genome of *Oxytricha* full of transposons
- Macronucleus has none
- If transposases are inactivated, the macronucleus fails to develop properly
- Transposons and transposase probably central in rearrangement process

What is a phylogeny?

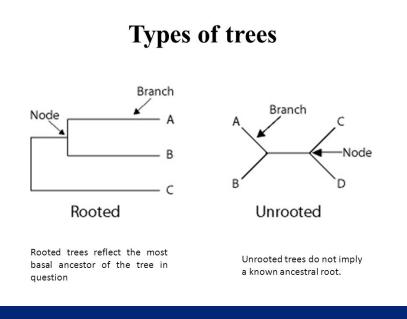
- A branching tree showing inferred relationships
- Taxon, taxa: the units at the tips of the tree (species, populations, individuals, genes)
- Clade: all taxa descending from a common ancestor
- Root: the common ancestor of the whole tree



What are phylogenies good for?

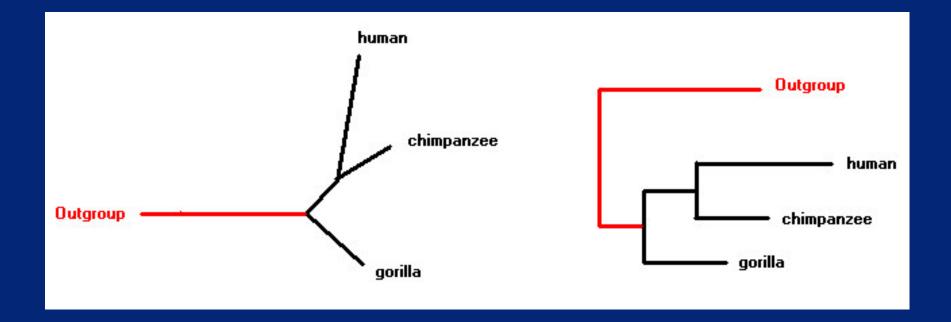
- Relationships between organisms, populations, species
- Dates of evolutionary events
- Evolutionary patterns-did some features evolve multiple times?
- Removing influence of phylogeny from ecological analyses ("comparative method")
- Relationships among genes
- Patterns of speciation and diversification

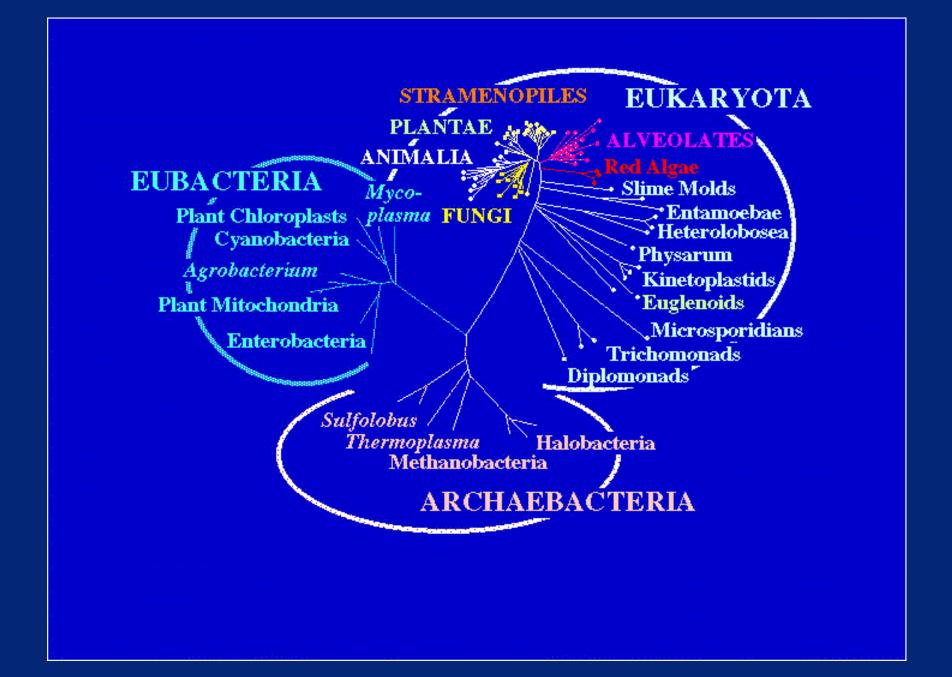
- Branching pattern shows pattern of relationships
- Right-left ordering is NOT significant; can be rearranged to emphasize or obscure points!
- Branch lengths may or may not be meaningful
- Biologists draw root at the bottom; math and CS types draw root at the top


Practice problem

Two of these trees are the same (except for branch lengths). Which two?

Rooted versus unrooted trees


- A rooted tree (phylogeny) has a specific direction of evolution
- The root is the ancestral form from which the others evolved
- This is the most informative type of tree
- Unfortunately, most phylogeny inference methods produce unrooted trees


• An unrooted tree corresponds to a collection of different rooted trees

- We don't know the direction of evolution
- Biological interpretation can be difficult without root
- Ways to root a tree:
 - Outgroup
 - Molecular clock

Outgroup rooting

- Outgroup species known not to belong to clade
 - Wrong outgroup leads to wrong root
 - Too-distant outgroup leads to noise in data
- Some comparisons have no suitable outgroup

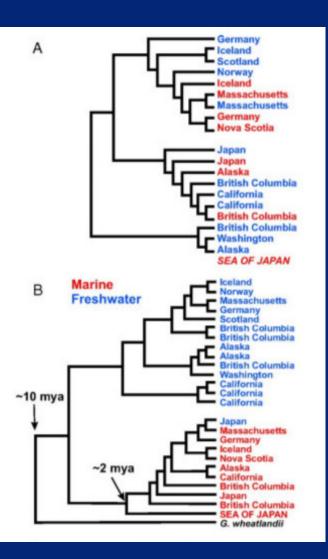
• Can we assume same rate of evolution everywhere (molecular clock)?

- If so:
 - Root is point most distant from all tips
 - Branch length is proportional to time
 - Dating any point on tree dates whole tree
- Clock may not hold:
 - Unequal generation time
 - Different selection constraints
 - Different mutation rates
- Clock assumption safest among closely related species

Appropriate data for phylogenies

- Good phylogenetic data has:
 - Enough variation to show relationships
 - Not so much variation that it randomizes signal
 - Ability to establish homology
 - Relative freedom from convergent evolution
 - Mode of evolution relatively well understood
 - If possible, a good clock
- No one type of data works for all problems

Some important dates in history


Origin of the universe	–12 ^a ±2
Formation of the solar system	-4.6 ±0.4
First self-replicating system	-3.5 ±0.5
Prokaryotic-eukaryotic divergence	–2.5 ±0.3
Plant-animal divergence	-1.0
Invertebrate-vertebrate divergence	-0.5
Mammalian radiation beginning	-0.1

^aBillions of years ago

	100 res. 0 ⁸ years	Protein	Lookback time ^b
Pseudogenes	400	45°	Primates,Rodents
Fibrinopeptides Lactalbumins	90 27	200 670	Mammalian Radiation Vertebrates
Ribonucleases	21	850	Animals
Hemoglobins	12	1.5 ^d	Plants/Animals
Acid Proteases	8	2.3	Prokayrotic/Eukarotic
Triosphosphate isomerase		6	Archaen
Glutamate dehydrogenase	1	18	?

^aPAMs, point accepted mutations. ^bUseful lookback time, 360 PAMs, 15% identity. ^cMillions of years. ^dBillions of years.

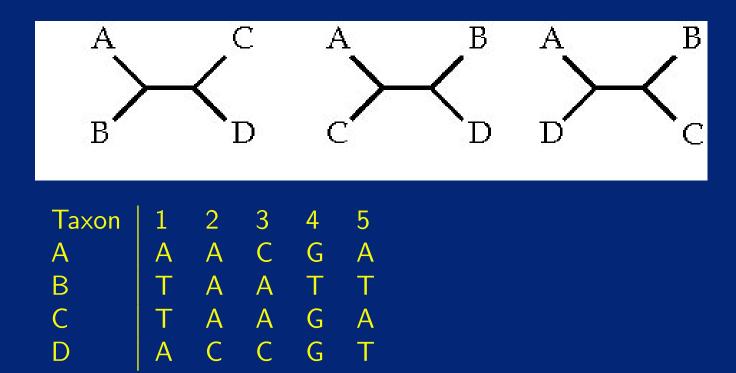
- Why not use loci involved in "exciting" traits of the species?
- Convergent evolution:
 - Two clades are under the same external pressure
 - They independently evolve the same response
 - Not a reliable indicator of relationships
- Upper figure is many random genes; lower is a gene involved in fresh/saltwater adaptation

Why phylogeny inference is hard

- Tips Topologies
 - 3 3
 - 4 18
 - 5 180
 - 6 2700
 - 7 56700
 - 8 1587600
 - 9 57153600
 - 10 2571912000
 - 15 6958057668962400000
 - 20 56448098958873059133696000000
 - 30 43684666131030695124646801986207638914406400000000000000
 - 40 302733382994800735654630336455145720004293943205386250170788872192000000000
 - 50 3.28632 \times 10¹¹²
- 100 1.37416 \times 10²⁸⁴

- In many cases tree search known to be "NP complete"
- No efficient algorithm is known-none may exist but this is unproven
- Solving any NP-complete problem solves ALL OF THEM
- Four consequences of such an algorithm:
 - Reliably find the best phylogeny
 - Win USD 1 million (Millennium Prize) from Clay Institute
 - Crack most/all current codes (business and military)
 - Difficult conversation with the NSA....
- Must use heuristic approximations which will sometimes fail (get the wrong tree)

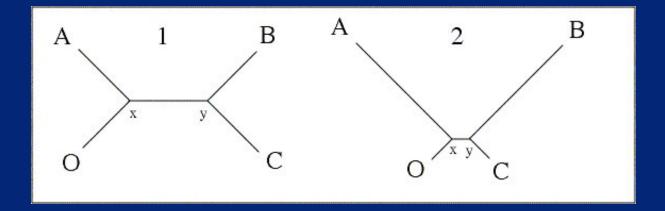
Four major approaches to phylogeny inference


• Prefer the tree which-

- Parsimony: explains the data with the fewest mutations
- Distance: minimizes the difference between observed and expected distances between taxa
- Likelihood: maximizes the probability of the data
- Bayesian: maximizes the posterior probability of the data given a prior
- The first two are easier: given a correct mutational model the second two are likely more accurate

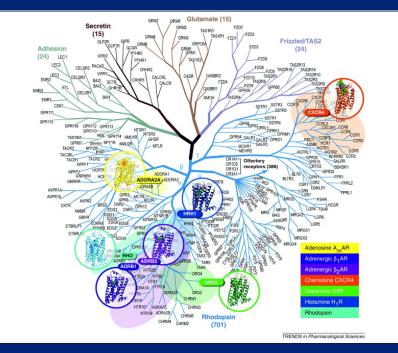
Parsimony

- Prefer the tree which explains the data with the fewest events (mutations)
 - Does not use a model of the mutation process (so can't use the wrong one)
 - Implicitly assumes changes are rare
 - Applicable to wide range of data:
 - * Sequences (DNA, RNA, protein)
 - * Genome rearrangements
 - * Morphological traits
 - Has issues if some branches are much longer than others


Practice problem-parsimony

How many changes are needed on each tree topology?

Which topology is preferred by parsimony?


Long branch attraction

- When 2 changes on a long branch more probable than 1 change on a short branch, parsimony tends to group the long branches together
- This bias gets worse the more data you have ("inconsistency")
- Discovered by Joe Felsenstein in this department

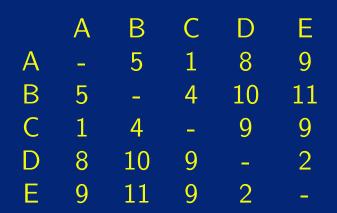
Betting on your trees

- Ken Rice spent years making parsimony trees of G-protein coupled receptors
 - Maximum likelihood too slow
 - Distance methods didn't perform well
- If new gene groups with:
 - Odor receptors ignore
 - Neurotransmitter receptors spend \$2K to validate

G-protein coupled receptor genes

• Transform data into a table of pairwise distances

- Find a tree which fits these distances well
- Different distance methods use different fitting criteria


	Human	Bonobo	Chimp	Gorilla	Orang
Human	—	4	5	8	12
Bonobo	4	_	1	9	14
Chimp	5	1	—	8	14
Gorilla	8	9	8	—	13
Orang	12	14	14	13	

- For very sparse mutations, counting differences may be good enough
- If some sites have mutated multiple times, this will undercount changes on the longer branches
- Use a mutational model to correct the distances
- Various models available:
 - Transition/transversion bias
 - Unequal base frequencies
 - Rate variation
 - Invariant sites

UPGMA

- UPGMA (Unweighted Pair-Group Method of Analysis) is a simple distance method
- Seldom used today:
 - Assumes a molecular clock
 - Behaves badly if clock assumption violated
- Neighbor-joining is a non-clock version that is widely used:
 - Very fast
 - Allows use of a sophisticated mutation model
- UPGMA demonstrates the idea of distance methods in a simple way

- Group together the two most similar species
- Divide their distance evenly across the branches leading to them
- Average their distances to all other species
- Rewrite the distance matrix with the new group and distances
- Repeat until tree is finished
- In case of ties, break arbitrarily or draw as three-way split

	Α	В	С	D	E
Α	-	5	1	8	9
В	5	-	4	10	11
С	1	4	-	9	9
D	8	10	9	-	2
Е	9	11	9	2	_

Group A and C to form AC, with branches of length 0.5

	AC	В	D	E
AC	-	4.5	8.5	9
В	4.5	-	10	11
D	8.5	10	-	2
Е	9	11	2	_

	AC	В	D	E
AC	-	4.5	8.5	9
В	4.5	-	10	11
D	8.5	10	-	2
Е	9	11	2	_

Group D and E to form DE, with branches of length 1.0

	AC	В	DE
AC	-	4.5	8.75
В	4.5	-	10.5
DE	8.75	10.5	_

ACBDEAC-4.58.75B4.5-10.5DE8.7510.5-

Group B with AC to form ABC, with branches of length 2.25

	ABC	DE
ABC	-	9.625
DE	9.625	-

ABCDEABC-9.625-

Group ABC with DE, with branches of length 4.80

Two hazards of phylogeny

• Garbage in, garbage out:

- Long pieces of autosomal DNA
- Misaligned sequences
- Non-homologous traits
- Gene tree not necessarily the same as the species tree
 - Paralogs
 - Incomplete lineage sorting (ancestral polymorphism)
 - Horizontal gene transfer

Wednesday

- More tree inference:
 - Likelihood methods
 - Bayesian methods
- Hazards of phylogeny inference
- How to validate a phylogeny