Roadmap

- Left over from Friday:
 - RNU2 locus
 - P element in large vs. small populations
 - Transposition machinery co-opted by cell
- Phylogenetic trees:
 - Interpreting a tree
 - Inferring trees by parsimony
 - Inferring trees by distance methods

From Liao (1999) AJHG

Thought problem

- Cross P into a lab strain and maintain a population in bottles
- Population may live or die
- Which is likely to do better, a large or small population?
- When this experiment has been done, large populations are more likely to survive

McClintock's "genome shock" hypothesis

- Transposons could allow an organism to control its mutation rate:
 - Suppress transposition when well adapted
 - Permit transposition when struggling, "hoping" for a useful mutation
- Alternative hypothesis: transposons are purely selfish
 - Suppress transposition whenever possible
 - Fail to suppress transposition when badly stressed
- Not easy to test these alternatives

Finding a use for transposons

Oxytricha genome rearrangement

- Two nuclei per cell:
 - Micronucleus used for reproduction, but genes not active
 - Macronucleus expresses genes
- Macronucleus genome is highly rearranged:
 - Cut into around 16,000 tiny chromosomes
 - Usually 1 gene per chromosome
 - Genes are re-assembled from fragments
 - Some are duplicated (dosage control?)
 - 95% of germline genome is destroyed

Transposons harnessed to chew up genome

- Germline genome of *Oxytricha* full of transposons
- Macronucleus has none
- If transposases are inactivated, the macronucleus fails to develop properly
- Transposons and transposase probably central in rearrangement process

What is a phylogeny?

- A branching tree showing inferred relationships
- Taxon, taxa: the units at the tips of the tree (species, populations, individuals, genes)
- Clade: all taxa descending from a common ancestor
- Root: the common ancestor of the whole tree

What are phylogenies good for?

- Relationships between organisms, populations, species
- Dates of evolutionary events
- Evolutionary patterns—did some features evolve multiple times?
- Removing influence of phylogeny from ecological analyses ("comparative method")
- Relationships among genes
- Patterns of speciation and diversification

How to look at a phylogeny

- Branching pattern shows pattern of relationships
- Right-left ordering is NOT significant; can be rearranged to emphasize or obscure points!
- Branch lengths may or may not be meaningful
- Biologists draw root at the bottom; math and CS types draw root at the top

Practice problem

Two of these trees are the same (except for branch lengths). Which two?

Rooted versus unrooted trees

- A rooted tree (phylogeny) has a specific direction of evolution
- The root is the ancestral form from which the others evolved
- This is the most informative type of tree
- Unfortunately, most phylogeny inference methods produce unrooted trees

Types of trees

Unrooted trees do not imply a known ancestral root.

Rooted versus unrooted trees

- An unrooted tree corresponds to a collection of different rooted trees
- We don't know the direction of evolution
- Biological interpretation can be difficult without root
- Ways to root a tree:
 - Outgroup
 - Molecular clock

Outgroup rooting

- Outgroup species known not to belong to clade
 - Wrong outgroup leads to wrong root
 - Too-distant outgroup leads to noise in data
- Some comparisons have no suitable outgroup

Molecular clock

- Can we assume same rate of evolution everywhere (molecular clock)?
- If so:
 - Root is point most distant from all tips
 - Branch length is proportional to time
 - Dating any point on tree dates whole tree
- Clock may not hold:
 - Unequal generation time
 - Different selection constraints
 - Different mutation rates
- Clock assumption safest among closely related species

Appropriate data for phylogenies

- Good phylogenetic data has:
 - Enough variation to show relationships
 - Not so much variation that it randomizes signal
 - Ability to establish homology
 - Relative freedom from convergent evolution
 - Mode of evolution relatively well understood
 - If possible, a good clock
- No one type of data works for all problems

Some important dates in history

Origin of the universe	-12 ^a ±2
Formation of the solar system	-4.6 ±0.4
First self-replicating system	-3.5 ±0.5
Prokaryotic-eukaryotic divergence	-2.5 ±0.3
Plant-animal divergence	-1.0
Invertebrate-vertebrate divergence	-0.5
Mammalian radiation beginning	-0.1

^aBillions of years ago

PAMsa/100 res.

Protein family /	108 years	Protein	Protein Lookback time ^b		
Pseudogenes Fibrinopeptides Lactalbumins Ribonucleases Hemoglobins Acid Proteases Triosphosphate isomeras	400 90 27 21 12 8 e 3	45° 200 670 850 1.5° 2.3 6	Primates,Rodents Mammalian Radiation Vertebrates Animals Plants/Animals Prokayrotic/Eukarotic Archaen		
Glutamate dehydrogenas	e 1	18	?		

^aPAMs, point accepted mutations. ^bUseful lookback time, 360 PAMs, 15% identity. ^cMillions of years. ^dBillions of years.

Convergent evolution?

- Why not use loci involved in "exciting" traits of the species?
- Convergent evolution:
 - Two clades are under the same external pressure
 - They independently evolve the same response
 - Not a reliable indicator of relationships
- Upper figure is many random genes; lower is a gene involved in fresh/saltwater adaptation

Why phylogeny inference is hard

```
Topologies
Tips
  3
      3
      18
  4
  5
      180
      2700
      56700
      1587600
  9
      57153600
 10
      2571912000
 15
      6958057668962400000
 20
      564480989588730591336960000000
      4368466613103069512464680198620763891440640000000000000
 30
      302733382994800735654630336455145720004293943205386250170788872192000000000
 40
      3.28632 \times 10^{112}
 50
      1.37416 \times 10^{284}
100
```

Why phylogenies are hard

- In many cases tree search known to be "NP complete"
- No efficient algorithm is known—none may exist but this is unproven
- Solving any NP-complete problem solves ALL OF THEM
- Four consequences of such an algorithm:
 - Reliably find the best phylogeny
 - Win USD 1 million (Millennium Prize) from Clay Institute
 - Crack most/all current codes (business and military)
 - Difficult conversation with the NSA....
- Must use heuristic approximations which will sometimes fail (get the wrong tree)

Four major approaches to phylogeny inference

- Prefer the tree which—
 - Parsimony: explains the data with the fewest mutations
 - Distance: minimizes the difference between observed and expected distances between taxa
 - Likelihood: maximizes the probability of the data
 - Bayesian: maximizes the posterior probability of the data given a prior
- The first two are easier: given a correct mutational model the second two are likely more accurate

Parsimony

- Prefer the tree which explains the data with the fewest events (mutations)
 - Does not use a model of the mutation process (so can't use the wrong one)
 - Implicitly assumes changes are rare
 - Applicable to wide range of data:
 - * Sequences (DNA, RNA, protein)
 - * Genome rearrangements
 - * Morphological traits
 - Has issues if some branches are much longer than others

Practice problem-parsimony

Taxon	1	2	3	4	5
Taxon A B	Α	Α	C	G	Α
В	Т	Α	Α	Т	Τ
C	Т		Α		
D	Α	C	C	G	Т

How many changes are needed on each tree topology?

Which topology is preferred by parsimony?

Long branch attraction

- When 2 changes on a long branch more probable than 1 change on a short branch, parsimony tends to group the long branches together
- This bias gets worse the more data you have ("inconsistency")
- Discovered by Joe Felsenstein in this department

Betting on your trees

- Ken Rice spent years making parsimony trees of G-protein coupled receptors
 - Maximum likelihood too slow
 - Distance methods didn't perform well
- If new gene groups with:
 - Odor receptors ignore
 - Neurotransmitter receptors –
 spend \$2K to validate

G-protein coupled receptor genes

Distance methods

- Transform data into a table of pairwise distances
- Find a tree which fits these distances well
- Different distance methods use different fitting criteria

	Human	Bonobo	Chimp	Gorilla	Orang
Human	_	4	5	8	12
Bonobo	4	_	1	9	14
Chimp	5	1	_	8	14
Gorilla	8	9	8	_	13
Orang	12	14	14	13	_

Distance methods

- For very sparse mutations, counting differences may be good enough
- If some sites have mutated multiple times, this will undercount changes on the longer branches
- Use a mutational model to correct the distances
- Various models available:
 - Transition/transversion bias
 - Unequal base frequencies
 - Rate variation
 - Invariant sites

UPGMA

- UPGMA (Unweighted Pair-Group Method of Analysis) is a simple distance method
- Seldom used today:
 - Assumes a molecular clock
 - Behaves badly if clock assumption violated
- Neighbor-joining is a non-clock version that is widely used:
 - Very fast
 - Allows use of a sophisticated mutation model
- UPGMA demonstrates the idea of distance methods in a simple way

UPGMA rules

- Group together the two most similar species
- Divide their distance evenly across the branches leading to them
- Average their distances to all other species
- Rewrite the distance matrix with the new group and distances
- Repeat until tree is finished
- In case of ties, break arbitrarily or draw as three-way split

	Α	В	C	D	Ε
Α	_	5	1	8	9
В	5	_	4	10	11
C	1	4	-	9	9
D	8	10	9	_	2
Ε	9	11	9	2	_

```
Ε
      5
                9
        1
Α
   5
        4
            10
               11
  1
      4
        - 9
                9
D
     10
        9
Ε
   9
      11
         9
             2
```

Group A and C to form AC, with branches of length 0.5

Group D and E to form DE, with branches of length 1.0

Group B with AC to form ABC, with branches of length 2.25

```
ABC DE
ABC - 9.625
DE 9.625 -
```

Group ABC with DE, with branches of length 4.80

Two hazards of phylogeny

- Garbage in, garbage out:
 - Long pieces of autosomal DNA
 - Misaligned sequences
 - Non-homologous traits
- Gene tree not necessarily the same as the species tree
 - Paralogs
 - Incomplete lineage sorting (ancestral polymorphism)
 - Horizontal gene transfer

Wednesday

- More tree inference:
 - Likelihood methods
 - Bayesian methods
- Hazards of phylogeny inference
- How to validate a phylogeny